Browse > Article
http://dx.doi.org/10.5850/JKSCT.2019.43.4.592

Characteristics of Infrared Blocking, Stealth and Color Difference of Aluminum Sputtered Fabrics  

Han, Hye Ree (Culture, Digital Seoul Culture Arts University)
Publication Information
Journal of the Korean Society of Clothing and Textiles / v.43, no.4, 2019 , pp. 592-604 More about this Journal
Abstract
This study examines the stealth function of sputtered fabric with an infrared thermal imaging camera in terms of the thermal and infrared (IR) transmittance characteristics. Various base fabrics were selected, infrared imaging was performed, and infrared transmittance was measured. By infrared camera experiment it was found that the sample was concealed because it had a similar color to the surroundings when the aluminum layer was directed toward the outside. In addition, a comparison of the infrared thermographic image of the untreated sample and the sputtered sample in the laboratory showed that the difference in ${\Delta}E$ value ranged from 31 to 90.4 and demonstrated effective concealment. However, concealment was not observed in the case of the 3-layer (Nylon-Al-Nylon) model when a sputtered aluminum layer existed between two nylon layers. The direction of the sputtering layer did not affect the infrared transmittance in the infrared transmittance experiment. Therefore, it seems better to interpret the concealing effect in the infrared thermographic images by using thermal transfer theory rather than infrared transmittance theory. We believe that the results of this study will be applicable to developing high performance smart clothing and military uniforms.
Keywords
Aluminum nanograin; Stealth; Heat transfer; Sputtering;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zhou, L., Shao, J.-Z., & Chai, L.-Q. (2010). Study on the camouflage-protective and dyeing properties of natural dye indigo. Journal of Donghua University (English Edition), (1), 46-51.
2 Agashe, C., Kluth, O., Hüpkes, J., Zastrow, U., Rech, B., & Wuttig, M. (2004). Efforts to improve carrier mobility in radio frequency sputtered aluminum doped zinc oxide films. Journal of Applied Physics, 95(4), 1911-1917. doi:10.1063/1.1641524   DOI
3 Agashe, C., Kluth, O., Schope, G., Siekmann, H., Hupkes, J., & Rech, B. (2003). Optimization of the electrical properties of magnetron sputtered aluminum-doped zinc oxide films for opto-electronic applications. Thin Solid Films, 442(1-2), 167-172. doi:10.1016/S0040-6090(03)00966-0   DOI
4 Alzaidi, A., Zhang, L., & Bajwa, H. (2012). Smart textiles based wireless ECG system. Proceedings of 2012 IEEE Long Island Systems, Applications and Technology Conference (LISAT), USA, 1-5. doi:10.1109/LISAT.2012.6223206
5 ASTM International. (2018). ASTM D737-18, Standard Test Method for Air Permeability of Textile Fabrics. ASTM International. Retrieved from https://www.astm.org/Standards/D737.htm
6 Aubert, T., Assouar, M. B., Legrani, O., Elmazria, O., Tiusan, C., & Robert, S. (2011). Highly textured growth of AlN films on sapphire by magnetron sputtering for high temperature surface acoustic wave applications. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 29(2), 021010-1-021010-6. doi:10.1116/1.3551604   DOI
7 Bergeron, B. V., White, K. C., Boehme, J. L., Gelb, A. H., & Joshi, P. B. (2008). Variable absorbance and emittance devices for thermal control. The Journal of Physical Chemistry C, 112(3), 832-838. doi:10.1021/jp076336d   DOI
8 Burkinshaw, S. M., Hallas, G., & Towns, A. D. (1996). Infrared camouflage. Review of Progress in Coloration and Related Topics, 26(1), 47-53. doi:10.1111/j.1478-4408.1996.tb00109.x   DOI
9 Chu, S. Z., Wada, K., Inoue, S., & Todoroki, S. (2002). Formation and microstructures of anodic alumina films from aluminum sputtered on glass substrate. Journal of The Electrochemical Society, 149(7), B321-B327. doi:10.1149/1.1480017   DOI
10 Deng, B., Wei, Q., Gao, W., & Yan, X. (2007). Surface functionalization of nonwovens by aluminum sputter coating. FIBRES & TEXTILES in Eastern Europe, 15(4), 90-92.
11 Depla, D., Segers, S., Leroy, W., Van Hove, T., & Van Parys, M. (2011). Smart textiles: An explorative study of the use of magnetron sputter deposition. Textile Research Journal, 81(17), 1808-1817. doi:10.1177/0040517511411966   DOI
12 Han, H. R. (2019). 알루미늄 스퍼터링 처리 소재의 적외선 차단, 색차 변화 및 스텔스 특성에 관한 연구 [A study on the characteristics of infrared blocking, change of color difference and stealth in the aluminium sputtered materials]. Proceedings of Korea Fashion & Costume Design Association, 1st Conference, Korea, 131.
13 English, S. J. (1999). Estimation of temperature and humidity profile information from microwave radiances over different surface types. Journal of Applied Meteorology, 38(10), 1526-1541. doi:10.1175/1520-0450(1999)038<1526:EOTAHP>2.0.CO;2   DOI
14 Habekost, M. (2013). Which color differencing equation should be used? International Circular of Graphic Education and Research, 6, 20-33.
15 Han, H. R. (2016). Thermal characteristics of aluminum sputtered fabrics (Unpublished doctorate dissertation). Seoul National University, Seoul.
16 Han, H. R., & Kim. J. (2018). A study on the thermal and physical properties of nylon fabric treated by metal sputtering (Al, Cu, Ni). Textile Research Journal, 88(21), 2397-2414. doi:10.1177/0040517517731662   DOI
17 Han, H. R., Park, Y., Yun, C., & Park, C. (2018). Heat transfer characteristics of aluminum sputtered fabrics. Journal of Engineered Fibers and Fabrics, 13(3), 37-44. doi:10.1177/155892501801300305
18 Jang, S., Cho, J., Jeong, K., & Cho, G. (2007). Exploring possibilities of ECG electrodes for bio-monitoring smartwear with Cu sputtered fabrics. In J. A. Jacko (Ed.), Human-computer interaction. Interaction platforms and technique : 12th International Conference, HCI International 2007, Beijing, China, July 22-27, 2007, Proceeding, Part II (pp. 1130-1137). Berlin and Heidelberg: Springer.
19 Huffman, G. L., Fahnline, D. E., Messier, R., & Pilione, L. J. (1989). Stress dependence of reactively sputtered aluminum nitride thin films on sputtering parameters. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 7(3), 2252-2255. doi:10.1116/1.575923   DOI
20 Hui, Z., & Jianchun, Z. (2007). Near-infrared green camouflage of PET fabrics using disperse dyes. Sen'i Gakkaishi, 63(10), 223-229. doi:10.2115/fiber.63.223   DOI
21 Knotek, O., Bohmer, M., & Leyendecker, T. (1986). On structure and properties of sputtered Ti and Al based hard compound films. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 4(6), 2695-2700. doi:10.1116/1.573708   DOI
22 Puzikova, N. P., Uvarova, E. V., Filyaev, I. M., & Yarovaya, L. A. (2008). Principles of an approach for coloring military camouflage. Fiber Chemistry, 40(2), 155-159. doi:10.1007/s10692-008-9030-9   DOI
23 Li, T.-T., & Cuevas, A. (2009). Effective surface passivation of crystalline silicon by rf sputtered aluminum oxide. physica status solidi (RRL) Rapid Research Letters, 3(5), 160-162. doi:10.1002/pssr.200903140   DOI
24 Mao, Z., Wang, W., Liu, Y., Zhang, L., Xu, H., & Zhong, Y. (2014). Infrared stealth property based on semiconductor (M)-to-metallic (R) phase transition characteristics of W-doped $VO_2$ thin films coated on cotton fabrics. Thin Solid Films, 558, 208-214. doi:10.1016/j.tsf.2014.02.055   DOI
25 Mao, Z., Yu, X., Zhang, L., Zhong, Y., & Xu, H. (2014). Novel infrared stealth property of cotton fabrics coated with nano ZnO: (Al, La) particles. Vacuum, 104, 111-115. doi:10.1016/j.vacuum.2014.01.011   DOI
26 Rubeziene, V., Padleckiene, I., Baltusnikaite, J., & Varnaite, S. (2008). Evaluation of camouflage effectiveness of printed fabrics in visible and near infrared radiation spectral ranges. MATERIALS SCIENCE (MEDZIAGOTYRA), 14(4), 361-365.
27 Shahidi, S., Ghoranneviss, M., Moazzenchi, B., Anvari, A., & Rashidi, A. (2007). Aluminum coatings on cotton fabrics with low temperature plasma of argon and oxygen. Surface and Coatings Technology, 201(9-11), 5646-5650. doi:10.1016/j.surfcoat.2006.07.105   DOI
28 Shigesato, Y., & Paine, D. C. (1994). A microstructural study of low resistivity tin-doped indium oxide prepared by d.c. magnetron sputtering. Thin Solid Films, 238(1), 44-50. doi:10.1016/0040-6090(94)90646-7   DOI
29 Shih, W.-C., & Zoh, Z.-X. (2014). Fabrication of AlN films by RF magnetron sputtering for surface acoustic wave applications. Ferroelectrics, 459(1), 52-62. doi:10.1080/00150193.2013.837768   DOI
30 Shuskus, A. J., Reeder, T. M., & Paradis, E. L. (1974). rf-sputtered aluminum nitride films on sapphire. Applied Physics Letters, 24(4), 155. doi:10.1063/1.1655132   DOI
31 Suter, J. J., Bryden, W. A., Kistenmacher, T. J., & Parga, R. D. (1995). Aluminum nitride on sapphire films for surface acoustic wave chemical sensors. Johns Hopkins APL Technical Digest, 16(3), 288-295.
32 Valor, E., & Caselles, V. (1996). Mapping land surface emissivity from NDVI: Application to European, African, and South American areas. Remote Sensing of Environment, 57(3), 167-184. doi:10.1016/0034-4257(96)00039-9   DOI
33 Matsunami, N., Kakiuchida, H., Sataka, M., & Okayasu, S. (2013). XRD characterization of AlN thin films prepared by reactive RF-Sputter deposition. Advances in Materials Physics and Chemistry, 3(1A), 101-107. doi:10.4236/ampc.2013.31A012   DOI
34 Wang, W., Fang, S., Zhang, L., & Mao, Z. (2015). Infrared stealth property study of mesoporous carbon-aluminum doped zinc oxide coated cotton fabrics. Textile Research Journal, 85(10), 1065-1075. doi:10.1177/0040517514559586   DOI
35 Wei, Q. F., Xu, W. Z., Ye, H., & Huang, F. L. (2006). Surface funtionalization of polymer fibers by sputter coating. Journal of Industrial Textiles, 35(4), 287-294. doi:10.1177/1528083706060783   DOI
36 Xu, Y.-Y., Cai, Z.-S., He, K.-L., & Zhang, J.-L. (2009). Near-infrared camouflage of cotton fabric under different background. Textile Auxiliaries, 3. Retrieved from http://en.cnki.com.cn/Article_en/CJFDTOTAL-YRZJ200903005.htm
37 Zhang, H., & Zhang, J. Ch. (2008). Near-infrared green camouflage of cotton fabrics using vat dyes. The Journal of the Textile Institute, 99(1), 83-88. doi:10.1080/00405000701556392   DOI