Browse > Article
http://dx.doi.org/10.29049/rjcc.2022.30.4.579

Stealth, electromagnetic interception, and electrical properties of aluminum sputtered clothing materials - Focusing on the density change -  

Han, Hye Ree (Dept. of Beauty Art Care, Graduate School of Dongguk University)
Publication Information
The Research Journal of the Costume Culture / v.30, no.4, 2022 , pp. 579-593 More about this Journal
Abstract
This study examines the surface characteristics, electrical conductivity, electromagnetic wave blocking characteristics, infrared (IR) transmittance, stealth function, thermal characteristics, and moisture characteristics of IR thermal imaging cameras. Nylon film (NFi), nylon fabric (NFa), and 5 types of nylon mesh were selected as the base materials for aluminum sputtering, and aluminum sputtering was performed to study IR thermal imaging, color difference, temperature change, and so on, and the relationship with infrared transmittance was assessed. The electrical conductivity was measured and the aluminum-sputtered nylon film demonstrated 25.6kΩ of surface resistance and high electrical conductivity. In addition, the electromagnetic wave shielding characteristics of the sputtering-treated nylon film samples were noticeably increased as a result of aluminum sputtering treatment as measured by the electromagnetic wave blocking characteristics. When NFi and NFa samples with single-sided sputtering were placed on the human body (sputtering layer faced the outside air) and imaged using IR thermographic cameras, the sputtering layer displayed a color similar to the surroundings, showing a stealth effect. Moreover, the tighter the sample density, the better the stealth function. According to the L, a, b measurements, when the sputtering layer of NFi and NFa samples faced the outside air, the value of a was generally high, thereby demonstrating a concealing effect, and the △E value was also high at 124.2 and 93.9, revealing a significant difference between the treated and untreated samples. This research may be applicable to various fields, such as the military wear, conductive sensors, electromagnetic wave shielding film, and others.
Keywords
sputtering technology; aluminum; electromagnetic interception; conductivity; stealth;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Baker, A. A., Engwall, A. M., Bimo, L. B., Bae, J. H., Shim, S. J., Moody, J. D., & Kuchevev, S. O. (2022). Tantalum suboxide films with tunable composition and electrical resistivity deposited by reactive magnetron sputtering. Coatings, 12(7), 917. doi:10.3390/coatings12070917   DOI
2 Baptista, A., Silva, F., Porteiro, J., Miguez, J., & Pinto, G. (2018). Sputtering physical vapour deposition (PVD) coatings: A critical review on process improvement and market trend demands. Coatings, 8(11), 402. doi:10.3390/coatings8110402   DOI
3 Chankitmunkong, S., Eskin, D., Limmaneevichitr, C., Kengkla, N., & Diewwanit, O. (2022). Characterization of the anodic film and corrosion resistance of an A535 aluminum alloy after intermetallics removal by different etching time. Metals, 12, 1140. doi:10.3390/met12071140   DOI
4 Cheng, X., Wu, J., Yao, C., & Yang, G. (2019). Aluminum hypophosphite and aluminum phenylphosphinate: A comprehensive comparison of chemical interaction during pyrolysis in flame-retarded glass-fiber-reinforced polyamide 6. Journal of Fire Sciences, 37(3), 193-212. doi:10.1177/0734904119836208   DOI
5 Ni, H., Lu, C., Zhang, Y., Wang, X., Zhu, Y., Lv, S., & Zhang, J. (2022). Effects of sodium carbonate and calcium oxide on roasting denitrification of recycled aluminum dross with high nitrogen content. Coatings, 12(7), 922. doi:10.3390/coatings12070922   DOI
6 Samuel, E., Nabawy, A. M., Samuel, A. M., Doty, H. W., Songmene, V., & Samuel, F. H. (2022). Effect of Zr and Ti addition and aging treatment on the microstructure and tensile properties of Al-2%Cu-based alloys. Materials, 15, 4511. doi:10.3390/ma15134511   DOI
7 Han, H. R. (2019). Characteristics of infrared blocking, stealth and color difference of aluminum sputtered fabrics. Journal of the Korean Society of Clothing and Textiles, 43(4), 592-604. doi:10.5850/JKSCT.2019.43.4.592   DOI
8 Hou, J., Cai, Z., & Lu, K. (2017). Cone calorimeter evaluation of reinforced hybrid wood-aluminum composites. Journal of Fire Sciences, 35(2), 118-131. doi:0.1177/0734904116683717   DOI
9 Kadioglu, F., & Alaboyun, O. Z. (2022). Damping contribution of the glass reinforced aluminum laminates epoxy to the aluminum based-sandwich structures. Journal of Sandwich Structures & Materials, 24(3), 1611-1628. doi:10.1177/10996362211053636   DOI
10 Lee, S. Y., & Lee, Y. H. (2019). Characteristics of eco-friendly design in contemporary children's fashion collection. The Research Journal of the Costume Culture, 27(4), 384-397. doi:10.29049/rjcc.2019.27.4.384   DOI
11 Qadir, M., Li, Y., & Wen, C. (2019). Ion-substituted calcium phosphate coatings by physical vapor deposition magnetron sputtering for biomedical applications: A review. Acta Biomaterialia, 89, 14-32. doi:10.1016/j.actbio.2019.03.006   DOI
12 Hasan, S., Jewel, M. U., Karakalos, S. G., Gaevski, M., & Iftikhar, A. (2022). Comparative spectroscopic study of aluminum nitride grownby MOCVD in H2 and N2 reaction environment. Coatings, 12(7), 924. doi:10.3390/coatings12070924   DOI
13 Shahidi, S., & Ghoranneviss, M. (2016). Plasma sputtering for fabrication of antibacterial and ultraviolet protective fabric. Clothing and Textiles Research Journal, 34(1), 37-47. doi:10.1177/0887302X15594455   DOI
14 Cen, C., Wu, H., Lee, C., Fan, L., & Liu, F. (2019). Experimental investigation on the sputtering and micro-explosion of emulsion fuel droplets during impact on a heated surface. International Journal of Heat and Mass Transfer, 132, 130-137. doi:10.1016/j.ijheatmasstransfer.2018.12.007   DOI
15 Chen, L., Ren, Z., Liu, X., Wang, K., & Wang, Q. (2021). Infrared-visible compatible stealth based on Al-SiO2 nanoparticle composite film. Optics Communications, 482, 126608. doi:10.1016/j.optcom.2020.126608   DOI
16 Chen, T., Yang, E. K., & Lee, Y. H. (2021). Development of virtual upcycling fashion design based on 3-dimensional digital clothing technology. The Research Journal of the Costume Culture, 29(3), 374-387. doi:10.29049/rjcc.2021.29.3.374   DOI
17 Salunkhe, P., Ali, M. A. V., & Kekuda, D. (2020). Investigation on tailoring physical properties of nickel oxide thin films grown by dc magnetron sputtering. Materials Research Express, 7(1), 016427. doi:10.1088/2053-1591/ab69c5   DOI
18 Dehghan, K., Shi, Z., Woodrum, T. H., Brewer, S., & Sacks, R. (1994). Surface features of conductors eroded by sputtering in a magnetron glow discharge plasma. Applied Spectroscopy, 48(5), 553-560. doi:10.1366/0003702944924808   DOI
19 Habekost, M. (2013). Which color differencing equation should be used? International Circular of Graphic Education and Research, 6, 20-33.
20 Han, H. R. (2022). A study on thermal and electrical properties of molybdenum sputtered clothing materials. The Research Journal of the Costume Culture, 30(1), 88-101. doi:10.29049/rjcc.2022.30.1.88   DOI
21 Iqbal, A., & Yasin, F. M. (2018). Reactive sputtering of aluminum nitride (002) thin films for piezoelectric applications: A review. Sensors, 18(6), 1797. doi:10.3390/s18061797   DOI
22 Tan, X. Q., Liu, J. Y., Niu, J. R., Liu, J. Y., & Tian, J. Y. (2018). Recent progress in magnetron sputtering technology used on fabrics. Materials, 11(10), 1953. doi:10.3390/ma11101953   DOI
23 Shi, Z., Woodrum, T. H., Dehghan, K., Brewer, S., & Sacks, R. (1992). Sputtering behavior of a magnetron glow discharge device. Applied Spectroscopy, 46(5), 749-757. doi:10.1366/0003702924124709   DOI
24 Sripradit, A., & Theeradejvanichkul, T. (2022). A self-color-changing film with periodic nanostructure for anti-counterfeit application. Applied Sciences, 12(13), 6776. doi:10.3390/app12136776   DOI
25 Jones, A. H. S., Camino, D., Teer, D. G., & Jiang, J. (1998). Novel high wear resistant diamond-like carbon coatings deposited by magnetron sputtering of carbon targets. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 212(4), 301-306. doi:10.1243/1350650981542119   DOI
26 Kino, H., Ikuse, K., Dam, H., & Hamaguchi, S. (2021). Characterization of descriptors in machine learning for data-based sputtering yield prediction. AIP Physics of Plasmas, 28(1), 013504. doi:10.1063/5.0006816   DOI
27 Lai, H.-C., Tsai, H.-H., Hung, K.-Y., & Feng, H.-P. (2015). Fabrication of hydroxyapatite targets in radio frequency sputtering for surface modification of titanium dental implants. Journal of Intelligent Material Systems and Structures, 26(9), 1050-1058. doi:10.1177/1045389X14530593   DOI
28 Yeole, P., Ning, H., & Hassen, A. A. (2021). Development and characterization of a polypropylene matrix composite and aluminum hybrid material. Journal of Thermoplastic Composite Materials, 34(3), 364-381. doi:10.1177/0892705719843974   DOI
29 Shin, S. M., & Kim, M. J. (2015). Effect of eco-label recognition on corporate association and purchasing intention in fashion business. The Research Journal of the Costume Culture, 23(3), 523-536. doi:10.7741/rjcc.2015.23.3.523   DOI
30 Shin, S. M., & Lim, Y. (2021). A study on consumer confusion, value, and price sensitivity of eco-friendly fashion product. The Research Journal of the Costume Culture, 29(1), 48-64. doi:10.29049/rjcc.2021.29.1.48   DOI
31 Xue, F., He, D., & Zhou, H. (2022). Effect of ultrasonic vibration in friction stir welding of 2219 aluminum alloy: An effective model for predicting weld strength. Metals, 12, 1101. doi:10.3390/met12071101   DOI
32 Yuan, X., Wei, Q., Chen, D., & Xu, W. (2016). Electrical and optical properties of polyester fabric coated with Ag/TiO2 composite films by magnetron sputtering. Textile Research Journal, 86(8), 887-894. doi:10.1177/0040517515595034   DOI
33 Omoniyi, P., Abolusoro, O., Olorunpomi, O., Ajiboye, T., Adewuyi, O., Aransiola, O., & Akinlabi, E. (2022). Corrosion properties of aluminum alloy reinforced withwood particles. Journal of Composites Science, 6(7), 189. doi:10.3390/jcs6070189   DOI
34 Liu, S., Li, J., Zhang, S., Zhang, X., Ma, J., Wang, N., . . . Chen, S. (2020). Template-assisted magnetron sputtering of cotton nonwovens for wound healing application. ACS Applied Bio Materials, 3(2), 848-858. doi:10.1021/acsabm.9b00942   DOI
35 Ma, Y., Li, L., Qian, J., Qu, W., Luo, R., Wu, F., & Chen, R. (2021). Materials and structure engineering by magnetron sputtering for advanced lithium batteries. Energy Storage Materials, 39, 203-224. doi:10.1016/j.ensm.2021.04.012   DOI