• Title/Summary/Keyword: IR Infrared sensors

Search Result 91, Processing Time 0.023 seconds

The fabrication of bolometric IR detector for glucose concentration detection (글루코오스 농도 측정을 위한 볼로미터 타입의 적외선 센서 제작)

  • Choi, Ju-Chan;Jung, Ho;Park, Kun-Sik;Park, Jong-Moon;Koo, Jin-Gun;Kang, Jin-Yeong;Kong, Seong-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.250-255
    • /
    • 2008
  • A vanadium pentoxide ($V_2O_5$)-based bolometric infrared (IR) sensor has been designed and fabricated using micro electro mechanical systems (MEMS) technology for glucose detection and its resistive characteristics has been illustrated. The proposed bolometric infrared sensor is composed of the vanadium pentoxide array that shows superior temperature coefficient of resistance (TCR) and standard silicon micromachining compatibility. In order to achieve the best performance, deposited $V_2O_5$ thin film is optimized by adequate rapid thermal annealing (RTA) process. Annealed vanadium oxide thin film has demonstrated a linear characteristic and relatively high TCR value (${-4}%/^{\circ}C$). The resistance of vanadium oxide is changed by IR intensity based on glucose concentration.

Electrical conductivity and stealth characteristics of copper-sputtered clothing materials - Focusing on changes in the pore size of clothing materials - (구리 스퍼터링 의류소재의 전기전도성과 스텔스 특성 - 의류소재 기공 크기 변화를 중심으로 -)

  • Hye Ree Han
    • The Research Journal of the Costume Culture
    • /
    • v.31 no.1
    • /
    • pp.107-123
    • /
    • 2023
  • This research studied the electrical characteristics, IR transmission characteristics, stealth functions, and thermal characteristics of infrared thermal-imaging cameras of copper-sputtered samples. Nylon samples were prepared for each density as a base material for copper-sputtering treatment. Copper-sputtered NFi, NM1, NM2, NM3, NM4, and NM5, showed electrical resistance of 0.8, 445.7, 80.7, 29.7, 0.3, and 2.2 Ω, respectively, all of which are very low values; for the mesh sample, the lower the density, the lower the electrical resistance. Measuring the IR transmittance showed that the infrared transmittance of the copper-sputtered samples was significantly reduced compared to the untreated sample. Compared to the untreated samples, the transmittance went from 92.0-64.1%. When copper sputtered surface was directed to the IR irradiator, the IR transmittance went from 73.5 to 43.8%. As the density of the sample increased, the transmittance tended to decreased. After the infrared thermal imaging, the absolute values of △R, △G, and △B of the copper phase increased from 2 to 167, 98 to 192, and 7 to 118, respectively, and the closer the density of the sample (NM5→NFi), the larger the absolute value. This proves that the dense copper phase-up sample has a stealth effect on the infrared thermal imaging camera. It is believed that the copper-sputtered nylon samples produced in this study have applications in multifunctional uniforms, bio-signal detection sensors, stage costumes, etc.

Fabrication of 64x1 linear array infrared detector using Hg1-xCdxTe (Hg1-xCdxTe를 이용한 64x1 선형 적외선 감지 소자 제작)

  • Kim, Jin-Sang;Suh, Sang-Hee
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.135-138
    • /
    • 2009
  • $64{\times}1$ forcal plane infrared detector has been fabricated by using HgCdTe epi layer. HgCdTe was grown on GaAs substrate by using metal organic chemical vapor deposition. This paper describes key developments in the epi layer growth and device fabrication process. The performance of IR imaging system is summarized.

VTG based Moving Target Tracking Performance Improvement Method using MITL System in a Maritime Environment (해상환경에서 MITL 시스템을 활용한 VTG 기반 기동표적 추적성능 개선 기법)

  • Baek, Inhye;Woo, S.H. Arman
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.3
    • /
    • pp.357-365
    • /
    • 2019
  • In this paper, we suggest the tracking method of moving multi-objects in maritime environments. The image acquisition is conducted using IR(InfraRed) camera sensors on an airborne platform. Under the circumstance of maritime, the qualities of IR images can be significantly degraded due to the clutter influence, which directly gives rise to a tracking loss problem. In order to reduce the effects from the clutters, we introduce a technical approach under Man-In-The-Loop(MITL) system for enhancing the tracking performance. To demonstrate the robustness of the proposed approach based on VTG(Valid Tracking Gate), the simulations are conducted utilizing the airborne IR video sequences: Then, the tracking performances are compared with the existing Kalman Filter tracking techniques.

Heat Source Identification Technique of Aircraft and Flare using 2-color Detectable Infrared Sensors (복수 대역 감지 적외선 센서를 이용한 항공기와 플레어의 열원 식별 기술)

  • Lee, Dong-Si;Lee, Kee-Keun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.1031-1039
    • /
    • 2015
  • Present guided missiles are equipped with infrared seeker to find the infrared sources radiating from target plane and then chase, which results in an improvement of the hitting success rate when in striking target objects. To interrupt the chases from the guided missile, the target plane spreads the flare, avoiding the missile attracts. Our research is to develop a 2-color infrared identification technique to discern the flare and real thermal source from target plane. Considering flare radiation properties and EM atmosphere transmission rates, two channels were selected, in which main channel (MC) was in a range of 3.7 μm∼4.8 μm and auxiliary channel (AC) in 1.7 μm∼2.3 μm. A 2500K heat source was used for an artificial flare source, while a 570K heat source was utilized for airplane infrared source in experimental testing. Two infrared sensors detectable only at each chanel were employed in order to measure the voltage ratio from two channels, identifying the flare and real target plane via comparison the voltage ratio. Several experimental conditions were imported in order to prove that our proposed 2-color infrared identification technique is very efficient way to discern heat sources from aircraft and flare, demonstrating that our proposed technique is very promising means for our force’s InfraRed Counter Counter Measure (IRCCM) in order to countermeasure opposite force’s InfraRed Counter Measures (IRCM).

Deep-learning-based system-scale diagnosis of a nuclear power plant with multiple infrared cameras

  • Ik Jae Jin;Do Yeong Lim;In Cheol Bang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.493-505
    • /
    • 2023
  • Comprehensive condition monitoring of large industry systems such as nuclear power plants (NPPs) is essential for safety and maintenance. In this study, we developed novel system-scale diagnostic technology based on deep-learning and IR thermography that can efficiently and cost-effectively classify system conditions using compact Raspberry Pi and IR sensors. This diagnostic technology can identify the presence of an abnormality or accident in whole system, and when an accident occurs, the type of accident and the location of the abnormality can be identified in real-time. For technology development, the experiment for the thermal image measurement and performance validation of major components at each accident condition of NPPs was conducted using a thermal-hydraulic integral effect test facility with compact infrared sensor modules. These thermal images were used for training of deep-learning model, convolutional neural networks (CNN), which is effective for image processing. As a result, a proposed novel diagnostic was developed that can perform diagnosis of components, whole system and accident classification using thermal images. The optimal model was derived based on the modern CNN model and performed prompt and accurate condition monitoring of component and whole system diagnosis, and accident classification. This diagnostic technology is expected to be applied to comprehensive condition monitoring of nuclear power plants for safety.

Detection Method for Bean Cotyledon Locations under Vinyl Mulch Using Multiple Infrared Sensors

  • Lee, Kyou-Seung;Cho, Yong-jin;Lee, Dong-Hoon
    • Journal of Biosystems Engineering
    • /
    • v.41 no.3
    • /
    • pp.263-272
    • /
    • 2016
  • Purpose: Pulse crop damage due to wild birds is a serious problem, to the extent that the rate of damage during the period of time between seeding and the stage of cotyledon reaches 45.4% on average. This study investigated a method of fundamentally blocking birds from eating crops by conducting vinyl mulching after seeding and identifying the growing locations for beans to perform punching. Methods: Infrared (IR) sensors that could measure the temperature without contact were used to recognize the locations of soybean cotyledons below vinyl mulch. To expand the measurable range, 10 IR sensors were arranged in a linear array. A sliding mechanical device was used to reconstruct the two-dimensional spatial variance information of targets. Spatial interpolation was applied to the two-dimensional temperature distribution information measured in real time to improve the resolution of the bean coleoptile locations. The temperature distributions above the vinyl mulch for five species of soybeans over a period of six days from the appearance of the cotyledon stage were analyzed. Results: During the experimental period, cases where bean cotyledons did and did not come into contact with the bottom of the vinyl mulch were both observed, and depended on the degree of growth of the bean cotyledons. Although the locations of bean cotyledons could be estimated through temperature distribution analyses in cases where they came into contact with the bottom of the vinyl mulch, this estimation showed somewhat large errors according to the time that had passed after the cotyledon stage. The detection results were similar for similar types of crops. Thus, this method could be applied to crops with similar growth patterns. According to the results of 360 experiments that were conducted (five species of bean ${\times}$ six days ${\times}$ four speed levels ${\times}$ three repetitions), the location detection performance had an accuracy of 36.9%, and the range of location errors was 0-4.9 cm (RMSE = 3.1 cm). During a period of 3-5 days after the cotyledon stage, the location detection performance had an accuracy of 59% (RMSE = 3.9 cm). Conclusions: In the present study, to fundamentally solve the problem of damage to beans from birds in the early stage after seeding, a working method was proposed in which punching is carried out after seeding, thereby breaking away from the existing method in which seeding is carried out after punching. Methods for the accurate detection of soybean growing locations were studied to allow punching to promote the continuous growth of soybeans that had reached the cotyledon stage. Through experiments using multiple IR sensors and a sliding mechanical device, it was found that the locations of the crop could be partially identified 3-5 days after reaching the cotyledon stage regardless of the kind of pulse crop. It can be concluded that additional studies of robust detection methods considering environmental factors and factors for crop growth are necessary.

Uncooled amorphous silicon 16x16 infrared focal plane arrays development (비정질 실리콘 기반의 비냉각형 16x16 적외선 초점면배열의 개발)

  • Cheon, Sang-Hoon;Cho, Seong-M.;Yang, Woo-Seok;Ryu, Ho-Jun;Yang, Ki-Dong;Yu, Byoung-Gon;Choi, Chang-Auck
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.301-306
    • /
    • 2009
  • This paper describes the design and fabrication of 16$\times$16 microbolometer infrared focal plane arrays based on iMEMS technology. Amorphous silicon was used for infrared-sensitive material, and it showed the resistance of 18 Mohm and the temperature coefficient of resistivity of -2.4 %. The fabricated sensors exhibited responsivity of 78 kV/W and thermal time constant of 8.0 msec at a bias voltage of 0.5 V. The array performances had satisfactory uniformity less than 5 % within one-sigma. Also, 1/f noise of pixel was measured and the noise factor of $6\times10^{-11}$ was extracted. Finally, we obtained detectivity of $1.27\times10^9cmHz^{0.5}/W$ and noise equivalent temperature difference of 200 mK at a frame rate of 30 Hz.

IR and SAR Sensor Fusion based Target Detection using BMVT-M (BMVT-M을 이용한 IR 및 SAR 융합기반 지상표적 탐지)

  • Lim, Yunji;Kim, Taehun;Kim, Sungho;Song, WooJin;Kim, Kyung-Tae;Kim, Sohyeon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.11
    • /
    • pp.1017-1026
    • /
    • 2015
  • Infrared (IR) target detection is one of the key technologies in Automatic Target Detection/Recognition (ATD/R) for military applications. However, IR sensors have limitations due to the weather sensitivity and atmospheric effects. In recent years, sensor information fusion study is an active research topic to overcome these limitations. SAR sensor is adopted to sensor fusion, because SAR is robust to various weather conditions. In this paper, a Boolean Map Visual Theory-Morphology (BMVT-M) method is proposed to detect targets in SAR and IR images. Moreover, we suggest the IR and SAR image registration and decision level fusion algorithm. The experimental results using OKTAL-SE synthetic images validate the feasibility of sensor fusion-based target detection.

A study on the design of Carbon Dioxide Measurement System using Infrared sensor and PID temperature control (PID 온도 제어 및 적외선 센서를 이용한 이산화탄소 측정 시스템 설계에 관한 연구)

  • Lim, Hyung-Taek;Beack, Seung-Hwa;Joo, Kwan-Sik
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.259-264
    • /
    • 1999
  • The $CO_2$ measuring system using infrared sensor has the variance according to the temperature change. Therefore, the temperature compensation should be needed to obtain a reliable measurement. In this study, the sensor module consist of infrared $CO_2$ Sensor, IR Source, pipe and the heater and measuring system has amplifier, A/D converter and microprocessor. And we suggest a method to reduce the error by using the PID temperature control. We use optimum parameters setting of Ziegler & Nichols as well as PID temperature control algorithm for the temperature compensation. In this method, PID optimum parameter is set from dummy time(L) and maximum slope(R). As a result of using this PID temperature control, it is founded that it has the fast response and low steady state error. Therefore, it is certainly proved that this is very suitable algorithm to correct the error on measurement.

  • PDF