DOI QR코드

DOI QR Code

Electrical conductivity and stealth characteristics of copper-sputtered clothing materials - Focusing on changes in the pore size of clothing materials -

구리 스퍼터링 의류소재의 전기전도성과 스텔스 특성 - 의류소재 기공 크기 변화를 중심으로 -

  • Hye Ree Han (Dept. of Beauty Art Care, Graduate School of Dongguk University)
  • 한혜리 (동국대학교 대학원 뷰티아트케어학과)
  • Received : 2022.12.23
  • Accepted : 2023.02.16
  • Published : 2023.02.28

Abstract

This research studied the electrical characteristics, IR transmission characteristics, stealth functions, and thermal characteristics of infrared thermal-imaging cameras of copper-sputtered samples. Nylon samples were prepared for each density as a base material for copper-sputtering treatment. Copper-sputtered NFi, NM1, NM2, NM3, NM4, and NM5, showed electrical resistance of 0.8, 445.7, 80.7, 29.7, 0.3, and 2.2 Ω, respectively, all of which are very low values; for the mesh sample, the lower the density, the lower the electrical resistance. Measuring the IR transmittance showed that the infrared transmittance of the copper-sputtered samples was significantly reduced compared to the untreated sample. Compared to the untreated samples, the transmittance went from 92.0-64.1%. When copper sputtered surface was directed to the IR irradiator, the IR transmittance went from 73.5 to 43.8%. As the density of the sample increased, the transmittance tended to decreased. After the infrared thermal imaging, the absolute values of △R, △G, and △B of the copper phase increased from 2 to 167, 98 to 192, and 7 to 118, respectively, and the closer the density of the sample (NM5→NFi), the larger the absolute value. This proves that the dense copper phase-up sample has a stealth effect on the infrared thermal imaging camera. It is believed that the copper-sputtered nylon samples produced in this study have applications in multifunctional uniforms, bio-signal detection sensors, stage costumes, etc.

Keywords

References

  1. Arendsen, L. P., Thakar, R., & Sultan, A. H. (2019). The use of copper as an antimicrobial agent in health care, including obstetrics and gynecology. Clinical Microbiology Reviews, 32(4), doi:10.1128/CMR.00125-18 
  2. Dai, M., Zhai, Y., & Zhang, Y. (2021). A green approach to preparing hydrophobic, electrically conductive textiles based on waterborne polyurethane for electromagnetic interference shielding with low reflectivity. Chemical Engineering Journal, 421(2), 127749. doi:10.1016/j.cej.2020.127749 
  3. David, D. A., Naiker, V., Fatima, J. M. J., George, T., Dhawale, P. V., Supekar, M. V., . . . Raghavan, P. (2022). Polymer composites for stealth technology (1st ed.). Boca Raton: CRC Press. 
  4. Gu, J., Wang, W., & Yu, D. (2022). Temperaturecontrol and low emissivity dual-working modular infrared stealth fabric. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 653. doi:10.1016/j.colsurfa.2022.129966 
  5. Gualandi, I., Tessarolo, M., Mariani, F., Possanzini, L., Scavetta, E., & Fraboni, B. (2021). Textile chemical sensors based on conductive polymers for the analysis of sweat. Polymers, 13(6), 894. doi:10.3390/polym13060894 
  6. Han, H. R. (2022a). A study on thermal and electrical properties of molybdenum sputtered clothing materials. The Research Journal of the Costume Culture, 30(1), 88-101. doi:10.29049/rjcc.2022.30.1.88 
  7. Han, H. R. (2022b). Stealth, electromagnetic interception, and electrical properties of aluminum sputtered clothing materials-Focusing on the density change. The Research Journal of the Costume Culture, 30(4), 579-593. doi:/10.29049/rjcc.2022.30.4.579 
  8. Hu, J., Hu, Y., Ye, Y., & Shen, R. (2023). Unique applications of carbon materials in infrared stealth: A review. Chemical Engineering Journal, 452(1). doi:10.1016/j.cej.2022.139147 
  9. Jeng, Y.-R., Mendy, A. E., Ko, C.-T., Tseng, S.-F., & Yang, C.-R. (2021). Development of flexible triboelectric generators based on patterned conductive textile and PDMS layers. Energies, 14(5), 1391. doi:10.3390/en14051391 
  10. Jeong, D., Lee, S., Kwon, C.-R., Park, I., Heo, S., & Kim, D.-E. (2018). Design and development of fabric-type fitness band. The Research Journal of the Costume Culture, 26(4), 632-648. doi:10.29049/rjcc.2018.26.4.632 
  11. Jiang, Q., Zhang, P., Yu, Z., Shi, H., Wu, D., Yan, H., . . . Tian, Y. (2021). A review on additive manufacturing of pure copper. Coatings, 11(6), 740. doi:10.3390/coatings11060740 
  12. Krifa, M. (2021). Electrically conductive textile materials-application in flexible sensors and antennas. Textiles, 1(2), 239-257. doi:10.3390/textiles1020012 
  13. Li, X., Li, M., Li, X., Fan, X., & Zhi, C. (2022). Low infrared emissivity and strong stealth of Tibased MXenes. Research, 2022, 1-7. doi:10.34133/2022/9892628 
  14. Liu, M., Liu, Y., Gu, B., Wei, X., Xu, G., Wang, X., . . . Yong, K. T. (2019). Recent advances in copper sulphide-based nanoheterostructures. Chemical Society Reviews, 48, 4950-4965. doi:10.1039/C8CS00832A 
  15. Manrique, P. H., Lei, X., Xu, R., Zhou, M., Kinloch, I. A., & Young, R. J. (2019). Copper/graphene composites: A review. Journal of Materials Science, 54, 12236-12289. doi:10.1007/s10853-019-03703-5 
  16. Mitra, D., Kang, E.-T., & Neoh, K. G. (2019). Antimicrobial copper-based materials and coatings: Potential multifaceted biomedical applications. ACS Applied Materials & Interfaces, 12(19), 21159-21182. doi:10.1021/acsami.9b17815 
  17. Nazeer, F., Ma, Z., Gao, L., Wang, F., Khan, M. A., & Malik, A. (2019). Thermal and mechanical properties of copper-graphite and copper-reduced graphene oxide composites. Composites Part B: Engineering, 163, 77-85. doi:10.1016/j.compositesb.2018.11.004 
  18. Ojstrsek, A., Plohl, O., Gorgieva, S., Kurecic, M., Jancic, U., Hribernik, S., & Fakin, D. (2021). Metallisation of textiles and protection of conductive layers: An overview of application tech- niques. Sensors, 21(10), 3508. doi:10.3390/s21103508 
  19. Ouyang, Z., Xu, D., Yu, H. Y., Li, S., Song, Y., & Tam, K. C. (2022). Novel ultrasonic-coating technology to design robust, highly sensitive and wearable textile sensors with conductive nanocelluloses. Chemical Engineering Journal, 428. doi:10.1016/j.cej.2021.131289 
  20. Paek, K. J. (2022). Development and application of career experience programs for fashion majors using LED devices. The Research Journal of the Costume Culture, 30(2), 319-329. doi:10.29049/rjcc.2022.30.2.319 
  21. Paria, S., & Reiser, O. (2014). Copper in photocatalysis. Chemistry Europe, 6(9), 2477-2483. doi:10.1002/cctc.201402237 
  22. Peng, J., Chen, B., Wang, Z., Guo, J., Wu, B., Hao, S., . . . Zheng, N. (2020). Surface coordination layer passivates oxidation of copper. Nature, 586, 390-394. doi:10.1038/s41586-020-2783-x 
  23. Raha, S., Mallick, R., Basak, S., & Duttaroy, A. K. (2020). Is copper beneficial for COVID-19 patients? Medical Hypotheses, 142. doi:10.1016/j.mehy.2020.109814 
  24. Saleh, S. M., Gimiee, A. F., & Saad, H. A. (2022). Thermal radiations mitigation and stealth using egyptians cotton fabrics treated with ZnO nanoparticles and chlorophyll. International Journal on Advanced Science, Engineering and Information Technology, 8(3), 2314-2322. doi:10.29294/IJASE.8.3.2022.2314-2322 
  25. Stavrakis, A. K., Simic, M., & Stojanovic, G. M. (2021). Electrical characterization of conductive threads for textile electronics. Electronics, 10(8), 967. doi:10.3390/electronics10080967 
  26. Sun, J., Aslani, F., Wei, J., & Wang, X. (2021). Electromagnetic absorption of copper fiber oriented composite using 3D printing. Construction and Building Materials, 300. doi:10.1016/j.conbuildmat.2021.124026 
  27. Wang, D., Sun, J., Xue, Q., Li, Q., Guo, Y., Zhao, Y., . . . Zhi, C. (2021). A universal method towards conductive textile for flexible batteries with superior softness. Energy Storage Materials, 36, 272-278. doi:10.1016/j.ensm.2021.01.001 
  28. Wu, Y., Mechael, S. S., & Carmichae, T. B. (2021). Wearable e-textiles using a textile-centric design approach. Accounts of Chemical Research, 54(21), 4051-4064. doi:10.1021/acs.accounts.1c00433 
  29. Xi, J., Wei, G., An, L., Xu, Z., Xu, Z., Fan, L., & Gao, L. (2019). Copper/carbon hybrid nanozyme: Tuning catalytic activity by the copper state for antibacterial therapy. Nano Letters, 19(11), 7645-7654. doi:10.1021/acs.nanolett.9b02242 
  30. Xin, Y., Yu, K., Zhang, L., Yang, Y., Yuan, H., Li, H., . . . Zeng, J. (2021). Copper-based plasmonic catalysis: Recent advances and future perspectives. Advanced Materials, 33(32). doi:10.1002/adma.202008145 
  31. Zhao, H., Zhou, Y., Cao, S., Wang, Y., Zhang, J., Feng, S., . . . Kong, D. (2021). Ultrastretchable and washable conductive microtextiles by coassembly of silver nanowires and elastomeric microfibers for epidermal human-machine interfaces. ACS Materials Letters, 3(7), 912-920. doi:10.1021/acsmaterialslett.1c00128 
  32. Zhou, X., Xin, B., Chen, Z., Peng, X., Zhuo, T., & Yu, J. (2021). Preparation of PANI-coated hollow glass microsphere and its application in dualband stealth coated fabric. Polymer Bulletin, 79, 7555-7570. doi:10.1007/s00289-021-03854-z 
  33. Zhou, X., Xin, B., & Liu, Y. (2021). Research pro- gress on infrared stealth fabric. Journal of Physics: Conference Series, 1790. doi:10.1088/1742-6596/1790/1/012058 
  34. Zhu, S., Wang, M., Qiang, Z., Song, J., Wang, Y., Fan, Y., . . . Ye, C. (2021). Multi-functional and highly conductive textiles with ultra-high durability through 'green' fabrication process. Chemical Engineering Journal, 406, 127140. doi:10.1016/j.cej.2020.127140