• Title/Summary/Keyword: IPMSM(Interior Permanent Magnet Synchronous Machine)

Search Result 37, Processing Time 0.025 seconds

Investigation on Electromagnetic Field Characteristics of Interior Permanent Magnet Synchronous Machine Considering Harmonics of Phase Current due to Influence of Mechanical Energy Storage System

  • Park, Yu-Seop
    • Journal of Magnetics
    • /
    • v.22 no.1
    • /
    • pp.78-84
    • /
    • 2017
  • This paper investigates the influence of mechanical energy storage on the interior permanent magnet synchronous machine (IPMSM) when it is operated in the generating mode. An IPMSM with six-poles and nine-slots employing concentrated coil winding type is considered as the analysis model, and a surface-mounted permanent magnet synchronous motor directly connected to a heavy wheel is applied as the mechanical energy storage system by using the moment of inertia. Based on the constructed experimental set-up with manufactured machines and power converters, the generated electrical energy is converted into the mechanical energy, and the electromagnetic filed characteristics of IPMSM are subsequently investigated by applying the measured phase current of IPMSM based on finite element method. Compared to the characteristics in a no-load condition, it is confirmed that the magnetic behavior, radial force, and power loss characteristics are highly influenced by the harmonics of the phase current due to the mechanical energy storage system.

The Study on the improvement of Characteristics of Permanent Magnet Synchronous Motor for Washing Machine (세탁기용 영구자석 동기전동기의 특성 향상에 관한 연구)

  • Jung, Dae-Sung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.10
    • /
    • pp.47-53
    • /
    • 2015
  • IPMSM(Insert Permanent Magnet Synchronous Motor) is a very high degree of freedom in the design according to the permanent magnet insertion position. And the performance of IPMSM is affected a lot on barrier shape which determines the magnetic flux path from magnet. Thus the position of permanent magnet and the barrier shape has to be designed by considering both specification and operation condition. In the paper, the permanent magnet and barrier shape which is suitable for direct drive motor of washing machine has been studied. In addition, in order to verify the validity of the study, the test was evaluated by making a prototype motor.

Design and Experimental Verification of an Interior Permanent Magnet Motor for High-speed Machines (고속회전기 적용을 위한 매입형 영구자석 전동기의 설계 및 실험적 검증)

  • Kim, Sung-Il;Lee, Geun-Ho;Lee, Chang-Ha;Hong, Jung-Pyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.306-310
    • /
    • 2010
  • On account of small size and light weight, a high-speed machine is regarded as a key technology for many future applications of drive systems. In high-speed applications, permanent magnet synchronous motors have a number of merits such as high efficiency and high power density. Therefore, they are suitable for driving the air-blower of a fuel cell electric vehicle (FCEV) where space and energy savings are critical. Particularly, a surface-mounted permanent magnet synchronous motor (SPMSM) of them is mainly used as a high-speed machine. However, the motor has a fatal flaw due to a retaining can to maintain the mechanical integrity of a rotor assembly. The can results in the increase of magnetic air-gap length in the SPMSM. Thus, in this paper, an interior permanent magnet synchronous motor (IPMSM) is applied in order to drive the air-blower of FCEV instead of the SPMSM, and the experimental results of two models are compared to verify the capability of the IPMSM for high-speed applications.

Design of Wound Rotor Synchronous Machine for ISG and Performance Comparison with Interior Permanent Magnet Synchronous Machine (ISG용 권선형 동기기의 설계 및 IPMSM과 특성 비교)

  • Lee, Dongsu;Jeong, Yun-Ho;Jung, Sang-Yong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.1
    • /
    • pp.37-42
    • /
    • 2013
  • This paper deals with Wound Rotor Synchronous Motor (WRSM) purposely designed for Integrated Starter and Generator (ISG) installed in 42V automotive electrical system. Not only design objective and specifications of WRSM, but its adaptive design to minimize torque ripple and back-EMF Total Harmonics Distortion (THD) are considered. Furthermore, design characteristics of designed prototype have been investigated numerically in terms of torque, back EMF, loss, and efficiency, which are verified by performance comparison with Interior Permanent Magnet Synchronous Machine based on Finite Element Analysis (FEA).

Design the high Efficiency motor drive for drum wasing machine using IPMSM (IPMSM을 이용한 드럼세탁기용 고효율 구동 드라이브 설계)

  • Kong, Tae-Woong;Lee, Won-cheol;Lee, Byoung-Kuk;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.13-15
    • /
    • 2007
  • The washing machine needs high torque for large load variation, Interior permanent magnet synchronous motor(IPMSM) is proper to adapt the washing machine system. However, IPMSM can operate the lower output power than the other permanent magnet synchronous motor(PMSM) when the motor control by the conventional control. This paper suggests adaptive motor control for IPMSM and experiments the washing machine system.

  • PDF

A Novel Rotor Position Estimation Method using a Rotation Matrix for a Square-Wave Signal Injected Sensorless Control in IPMSM (IPMSM의 맥동하는 구형파 신호 주입 센서리스 제어를 위한 정지좌표계상에서의 새로운 위치 추정 기법)

  • Kim, Sang-Il;Kim, Rae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.3
    • /
    • pp.215-223
    • /
    • 2016
  • In this study, a novel rotor position sensorless estimation method of an interior permanent-magnet synchronous motor is proposed. A square-wave pulsating voltage signal is injected in the estimated synchronous reference frame. This signal is interpreted in the stationary reference frame regardless of the estimated rotor position. Thus, assuming that the position error is nearly zero is unnecessary because the variables in the estimated synchronous reference frame are not used. The rotor position can be exactly calculated from two voltage references and three sampled current feedbacks in the stationary reference frame. The proposed method is easy to implement and helps enhance the bandwidth of the current controller. The validity of the proposed method is verified by simulations and experiments.

Analytical Study Considering Both Core Loss Resistance and Magnetic Cross Saturation of Interior Permanent Magnet Synchronous Motors

  • Kim, Young-Kyoun
    • Journal of Magnetics
    • /
    • v.17 no.4
    • /
    • pp.280-284
    • /
    • 2012
  • This paper presents a method for evaluating interior permanent magnet synchronous motor (IPMSM) performance over the entire operation region. Using a d-q axis equivalent circuit model consisting of motor parameters such as the permanent magnetic flux, copper resistance, core loss resistance, and d-q axis inductance, a conventional mathematical model of an IPMSM has been developed. It is well understood that in IPMSMs, magnetic operating conditions cause cross saturation and that the iron loss resistance - upon which core losses depend - changes according to the motor speed; for the sake of convenience, however, d-q axis machine models usually neglect the influence of magnetic cross saturation and assume that the iron loss resistance is constant. This paper proposes an analysis method based on considering a magnetic cross saturation and estimating a core loss resistance that changes with the operating conditions and speed. The proposed method is then verified by means of a comparison between the computed and the experimental results.

Lumped-Parameter Thermal Analysis and Experimental Validation of Interior IPMSM for Electric Vehicle

  • Chen, Qixu;Zou, Zhongyue
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2276-2283
    • /
    • 2018
  • A 50kW-4000rpm interior permanent magnet synchronous machine (IPMSM) applied to the high-performance electric vehicle (EV) is introduced in this paper. The main work of this paper is that a 2-D T-type lumped-parameter thermal network (LPTN) model is presented for IPMSM temperature rise calculation. Thermal conductance matrix equation is generated based on calculated thermal resistance and loss. Thus the temperature of each node is obtained by solving thermal conductance matrix. Then a 3-D liquid-solid coupling model is built to compare with the 2-D T-type LPTN model. Finally, an experimental platform is established to verify the above-mentioned methods, which obtains the measured efficiency map and current wave at rated load case and overload case. Thermocouple PTC100 is used to measure the temperature of the stator winding and iron core, and the FLUKE infrared-thermal-imager is applied to measure the surface temperature of IPMSM and controller. Test results show that the 2-D T-type LPTN model have a high accuracy to predict each part temperature.

Optimal Design of Interior PM Synchronous Machines Using Randomly-Guided Mesh Adaptive Direct Search Algorithms (RG-MADS를 적용한 매입형 영구자석 동기전동기의 최적설계)

  • Kim, Kwang-Duck;Lee, Dong-Su;Jung, Sang-Yong;Kim, Jong-Wook;Lee, Cheol-Gyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.216-222
    • /
    • 2012
  • Newly proposed RG-MADS (Randomly Guided Mesh Adaptive Direct Search) has been applied to the optimal design of Interior Permanent Magnet Synchronous Motor (IPMSM) which has the distinctive features of magnetic saturation. RG-MADS, advanced from classical MADS algorithm, has the superiority in computational time and reliable convergence accuracy to the optimal solution, thus it is appropriate to the optimal design of IPMSM coupled with time-consuming Finite Element Analysis (FEA), necessary to the nonlinear magnetic application for better accuracy. Effectiveness of RG-MADS has been verified through the well-known benchmark-functions beforehand. In addition, the proposed RG-MADS has been applied to the optimal design of IPMSM aiming at maximizing the Maximum Torque Per Ampere (MTPA), which is regarded as representative design goal of IPMSM.

Minimization of Losses in Permanent Magnet Synchronous Motors Using Neural Network

  • Eskander, Mona N.
    • Journal of Power Electronics
    • /
    • v.2 no.3
    • /
    • pp.220-229
    • /
    • 2002
  • In this paper, maximum efficiency operation of two types of permanent magnet synchronous motor drives, namely; surface type permanent magnet synchronous machine (SPMSM) and interior type permanent magnet synchronous motor(IPMSM), are investigated. The efficiency of both drives is maximized by minimizing copper and iron losses. Loss minimization is implemented using flux weakening. A neural network controller (NNC) is designed for each drive, to achieve loss minimization at difffrent speeds and load torque values. Data for training the NNC are obtained through off-line simulations of SPMSM and IPMSM at difffrent operating conditions. Accuracy and fast response of each NNC is proved by applying sudden changes in speed and load and tracking the UC output. The drives'efHciency obtained by flux weakening is compared with the efficiency obtained when setting the d-axis current component to zero, while varying the angle of advance "$\vartheta$" of the PWM inverter supplying the PMSM drive. Equal efficiencies are obtained at diffErent values of $\vartheta$, derived to be function of speed and load torque. A NN is also designed, and trained to vary $\vartheta$ following the derived control law. The accuracy and fast response of the NN controller is also proved.so proved.