• Title/Summary/Keyword: IPA dehydration

Search Result 13, Processing Time 0.029 seconds

Dehydration Characteristics of i-Propyl Alcohol Aqueous Solution through NaA Zeolite Membrane (NaA 제올라이트 막에 의한 이소프로필 알코올 수용액의 탈수 분리 특성)

  • 최호상;김재홍;이석기;박헌휘
    • Membrane Journal
    • /
    • v.12 no.3
    • /
    • pp.158-164
    • /
    • 2002
  • This study was carried out the fundamental experiment to investigate the pervaporation process through NaA zeolite membrane for recycling the wasted isopropyl alcohol(IPA) in semiconductor cleaning processes. The NaA zeolite membrane used showed the excellent separation performance for full range of feed concentration and at high temperature operation. At 80 in operation temperature and 90 wt% IPA in feed concentration the separation performance was obtained about $1,500 g/m^2/hr$ in the permeation flux and more than 1,000 in the separation factor. In continuous operation of dehydration of IPA the average permeation flux was obtained about $1,000 g/m^2/hr$ at 80 and 90 wt% IPA feed concentration.

Separation Purification Characteristics of Rinsing Solution in Semiconductor Process using High Performance Polymer Membranes( II ) (기능성 고분자막을 이용한 반도체 공정 세정액의 분리정제특성( II ))

  • Lee Jae-Dal;Hong Young-Ki;Ro Duck-Kil;Bae Kie-Seo
    • Textile Coloration and Finishing
    • /
    • v.17 no.4 s.83
    • /
    • pp.21-26
    • /
    • 2005
  • A combination separation system is composed of three parts, simple microfiltration unit for the pretreatment of real waste IPA, pervaporation unit with plate and frame type module(the effective membrane area 9,040$cm^2$), and simple ultrafiltration unit as a refiner. Utrafiltration module with hollow fiber membrane(MWCO 10,000) used to purify waste aqueous IPA solution. In addition, the flux of $CMPA-K^+$ composite membrane for waste aqueous IPA solution was very steady-state with long experiment time(30 days). And the standard deviation($\sigma$) was 0.152 and then the coefficient of variation($CV\%$)was 10.82 The IPA concentration on the membrane performance using pervaporation module system could be increased from $89.85wt(\%)$ to more than $99.90wt\%$ in about 8hr at operation temperature of $70^{\circ}C$ using the pervaporation module system. Therefore, a combination separation process system of simple filtration and pervaporation was very effective for the purpose of the IPA purification and reuse front industrial electronic components cleaning process.

PVA/H-β zeolite mixed matrix membranes for pervaporation dehydration of isopropanol-water mixtures

  • Huang, Zhen;Ru, Xiao-Fei;Guo, Yu-Hua;Zhu, Ya-Tong;Teng, Li-Jun
    • Membrane and Water Treatment
    • /
    • v.10 no.2
    • /
    • pp.165-178
    • /
    • 2019
  • Mixed matrix membranes (MMMs) of poly (vinyl alcohol) (PVA) containing certain amounts of H-${\beta}$ zeolite for pervaporation were manufactured by using a solution casting protocol. These zeolite-embedded membranes were then characterized with scanning electron microscope (SEM), X-ray diffraction (XRD) and swelling tests. The membrane separation performance has been examined by means of isopropanol (IPA) dewatering from its highly concentrated aqueous solutions via response surface methodology (RSM). The results have demonstrated that the influences of feed IPA composition (85-95 wt.%), feed temperature ($50-70^{\circ}C$), zeolite loading (15-25 wt.%) and their interactive influences are all statistically significant on both pervaporation flux ($398-1228g/m^2{\cdot}h$) and water/isopropanol separation factor (617-2001). The quadratic models based on the RSM analysis have performed excellently to correlate experimental data with very high determination coefficients and very low relative standard deviations. The optimal pervaporation predictions given by using the RSM models demonstrate a total flux of $953g/m^2{\cdot}h$ and separation factor of 1458, and are excellently verified by experimental results. As reflected by these results, PVA MMMs embedded with hydrophilic $H-{\beta}$ zeolite entities have performed considerably better than its pure counterpart and indicated great potential for isopropanol dehydration applications.

Pervaporation Performance of Submerged Type Membrane for the Separation of Water from Aqueous Isopropanol Solution (IPA 수용액으로부터 수분제거를 위한 침지형 모듈 제조와 투과증발 특성)

  • Woo, Seung Moon;Park, Yun Hwan;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.28 no.4
    • /
    • pp.279-285
    • /
    • 2018
  • The pervaporation separation of isopropanol/water mixture was carried out on a series of chemically cross-linked poly(vinyl alcohol)(PVA) composite membranes. The membranes were prepared by casting three kinds of PVA solutions with varying concentrations of PVA and GA onto polyacrylonitrile (PAN) support followed by thermal cross linking. As the PVA concentration increased, the flux decreased but separation factor was increased. It was confirmed that the composite membrane coated with PVA-3 (98~99% hydrolyzed) at a concentration of 7 wt% PVA and 20 wt% glutaraldehyde (GA) exhibited a flux of $209g/m^2h$ and a separation factor of more than 100. The submerged module test was carried out with controlled feed tank temperature and IPA concentration of the feed solution. The continuous concentration of IPA solution was increased from 90% to 99% after 60 h.

Separation of Water from Aqueous iso-propyl Alcohol Solution Using NaY Zeolite Membrane (친수성 NaY 제올라이트 분리막을 이용한 이소프로필 알코올 수용액 분리)

  • Lee, Yong-Taek;Jeon, Hyun-Soo;Ahn, Hyo-Seong;Song, In-Ho;Jeong, Heon-Kyu;Lee, Soo-Bok
    • Membrane Journal
    • /
    • v.17 no.1
    • /
    • pp.61-66
    • /
    • 2007
  • A zeolite membrane shows better thermal, mechanical and chemical stabilities than a polymer membrane. Water was separated from iso-propyl alcohol (IPA)/water mixtures by pervaporation using the NaY zeolite membrane synthesized in the laboratory. The effects of a mole fraction of IPA in the feed solution and an operating temperature were studied on the permeation flux behavior and the separation factor of water with respect to IPA. As a mole fraction of IPA increased, the water flux as well as the separation factor decreased. As the experimental temperature increased, the water permeation flux increased while the separation factor decreased. For IPA/water binary mixtures, the water flukes through the NaY zeolite membrane were observed to be $1.9{\times}10^2{\sim}3.5{\times}10^3\;g/m^2{\cdot}hr$ and the separation factors were found to be $7.0{\times}10^2{\sim}2.0{\times}10^4$.

The Effect of the Crystalline Phase of Zirconia for the Dehydration of Iso-propanol (이소프로판올의 탈수반응에서 지르코니아 촉매의 결정상에 따른 영향)

  • Sim, Hye-In;Park, Jung-Hyun;Cho, Jun Hee;Ahn, Ji-Hye;Choi, Min-Seok;Shin, Chae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.51 no.2
    • /
    • pp.208-213
    • /
    • 2013
  • Zirconium hydroxide was synthesized by varying the aging time of the zirconyl chloride octahydrate at $100^{\circ}C$ in aqueous solution and the resulting hydroxides were calcined at $700^{\circ}C$ for 6 h to obtain the crystalline $ZrO_2$. The materials used in this study were characterized by differential thermal analysis (DTA), X-ray diffraction (XRD), $N_2$-sorption, transmission electron microscopy (TEM), $NH_3$ temperature-programmed desorption ($NH_3$-TPD), $CO_2$-TPD and iso-propanol TPD analyses to correlate with catalytic activity for the dehydration of iso-propanol. The pure tetragonal $ZrO_2$ phase was obtained after 24 h aging of zirconium hydroxide and successive calcination at $700^{\circ}C$. The increase of aging time showed the production of smaller particle size $ZrO_2$ resulting that the higher specific surface area and total pore volume. $NH_3$-TPD results revealed that the relative acidity of the catalysts increased along with the increase of aging time. On the other hand, the results of $CO_2$-TPD showed the reverse trend of $NH_3$-TPD results. The best catalytic activity for the dehydration of iso-propanol to propylene was shown over $ZrO_2$ catalyst aged for 168 h which had the highest $S_{BET}$ ($178\;m^2\;g^{-1}$). The catalytic activity could be correlated with high surface area, relative acidity and easy desorption of iso-propanol.

Synthesis and Characterization of High Surface Area of Zirconia: Effect of pH (고비표면적 지르코니움 산화물의 제조 및 특성 분석: pH 영향)

  • Jeong, Ye-Seul;Shin, Chae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.133-141
    • /
    • 2019
  • High specific surface area zirconia with acid-basic property was synthesized by precipitation using reflux method or hydrothermal synthesis method using ammonium hydroxide solution as precipitant in the range of pH of Zr solution from 2 to 10. The prepared zirconia was characterized by the nitrogen adsorption, X-ray diffraction (XRD), isopropanol temperature programmed desorption (IPA-TPD), scanning electron microscopy and X-ray photoelectron spectroscopy, and the catalytic activity in the IPA decomposition reaction was correlated with the acid-basic properties. When using reflux method, high pH of Zr solution was required to obtain high fraction of tetragonal zirconia, and pure tetragonal zirconia was possible at pH 9 or higher. High pH was required to obtain high specific surface area zirconia, and the hydrous zirconia synthesized at pH 10 had high specific surface area zirconia of $260m^2g^{-1}$ even after calcination at $600^{\circ}C$. However, hydrothermal synthesis with high pressure under the same conditions resulted in very low specific surface area below $40m^2g^{-1}$ and monoclinic phase zirconia was synthesized. High pH of the solution was required to obtain high specific surface area tetragonal phase zirconia. In hydrothermal synthesis requiring high pressure, monoclinic zirconia was produced irrespective of the pH of the solution, and the specific surface area was relatively low. Zirconia with high specific surface area and tetragonal phase was predominantly acidic compared to basicity and only propylene, which was observed as selective dehydration reaction in IPA decomposition reaction, was produced.

Effect of different conditions on pervaporation dehydration in CA/NYL66 blend membrane

  • Kazemzadeh, Akram;Mousavi, Seyed M.;Mehrzad, Jamshid;Motavalizadehkakhky, Alireza;Hosseiny, Malihesadat
    • Membrane and Water Treatment
    • /
    • v.10 no.6
    • /
    • pp.441-449
    • /
    • 2019
  • In this study, cellulose acetate (CA) / nylon66 (NYL66) (95/5) blend membranes with different thicknesses were prepared by a solvent evaporation method. The effects of membrane thickness (almost $7-25{\mu}m$), feed concentration (70-95 wt.% isopropanol), and feed temperature ($30-60^{\circ}C$) were investigated on the performance of membrane in the separation of isopropanol-water mixtures. With regard to the results of sorption experiments, it was found that the increase of feed temperature enhanced the overall sorption while by increasing feed concentration, the overall sorption passed through a maximum value at 70 wt. % isopropanol (IPA). The best separation factor 3080.51 was gained at high isopropanol concentration 95 wt.%, low feed temperature $30^{\circ}C$, and high membrane thickness $24.62{\mu}m$. Regarding the pervaporation separation index, the obtained results showed that proper values for the thickness of membrane, feed temperature, and isopropanol concentration in feed were $24.62{\mu}m$, $40^{\circ}C$, and 70 wt.%, respectively.

Preparation and Characterization of Al-Zr Mixed Oxide Catalysts (Al-Zr 혼합산화물 촉매의 제조 및 특성분석)

  • Park, Jung-Hyun;Youn, Hyun Ki;Shin, Chae-Ho
    • Clean Technology
    • /
    • v.22 no.1
    • /
    • pp.9-15
    • /
    • 2016
  • xAl-yZr mixed oxide catalysts with different molar ratios of Al/(Al+Zr) were prepared by a co-precipitation method and its catalytic performance was compared in the iso-propanol dehydration as a model reaction. The catalysts were characterized by X-ray diffraction (XRD), differential thermal analysis (DTA), N2 adsorprion-desorption, NH3 temperature programmed desorption (NH3-TPD), and iso-propanol TPD analyses. The addition of Al into ZrO2 promoted the formation of relatively small particles with large surface areas and retarded the transformation of teragonal phase to monoclnic phase. NH3-TPD results revealed that the relative acidity of the catalysts increased along with the increase of Al molar ratio. The catalytic activity for the dehydration of iso-propanol to propylene was also increased with the same tendency. The catalytic activity could be correlated with high surface area, acidity and easy desorption of iso-propanol.