DOI QR코드

DOI QR Code

Pervaporation Performance of Submerged Type Membrane for the Separation of Water from Aqueous Isopropanol Solution

IPA 수용액으로부터 수분제거를 위한 침지형 모듈 제조와 투과증발 특성

  • Woo, Seung Moon (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Park, Yun Hwan (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Nam, Sang Yong (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University)
  • 우승문 (경상대학교 나노신소재융합공학과 공학연구원) ;
  • 박윤환 (경상대학교 나노신소재융합공학과 공학연구원) ;
  • 남상용 (경상대학교 나노신소재융합공학과 공학연구원)
  • Received : 2018.08.23
  • Accepted : 2018.08.28
  • Published : 2018.08.31

Abstract

The pervaporation separation of isopropanol/water mixture was carried out on a series of chemically cross-linked poly(vinyl alcohol)(PVA) composite membranes. The membranes were prepared by casting three kinds of PVA solutions with varying concentrations of PVA and GA onto polyacrylonitrile (PAN) support followed by thermal cross linking. As the PVA concentration increased, the flux decreased but separation factor was increased. It was confirmed that the composite membrane coated with PVA-3 (98~99% hydrolyzed) at a concentration of 7 wt% PVA and 20 wt% glutaraldehyde (GA) exhibited a flux of $209g/m^2h$ and a separation factor of more than 100. The submerged module test was carried out with controlled feed tank temperature and IPA concentration of the feed solution. The continuous concentration of IPA solution was increased from 90% to 99% after 60 h.

이소프로필알코올/물 혼합물은 가교된 폴리비닐알코올 복합막을 이용하여 투과특성평을 알아보았다. 검화도가 다른 3종 PVA를 이용하여 고분자의 농도와 GA 농도에 따라서 투과특성을 확인하였다. 복합막은 PVA 용액을 PAN 지지체 위에 캐스팅한 후, 열가교를 통해 제조하였다. PVA 농도가 증가할수록 투과도는 감소하지만 선택도는 증가하는 것을 확인하였다. PVA-3이 7 wt% 농도로 코팅된 복합막에서 $209g/m^2h$의 투과도를 가지고, 100 이상의 선택도를 가지는 것을 확인하였다. 침지형 분리막을 제조하여 feed tank 온도와 feed 용액의 IPA 농도에 따라서 투과실험을 확인하였다. 또한 IPA 수용액에 농축실험을 지속적으로 한 결과, 60시간 후에 IPA의 농도가 99%까지 증가하는 것을 확인하였다.

Keywords

References

  1. A. Baudot and M. Marin, "Dairy aroma compounds recovery by pervaporation", J. Membr. Sci., 120, 207 (1996). https://doi.org/10.1016/0376-7388(96)00144-5
  2. E. Carretier, Ph. Moulin, M. Beaujean, and F. Charbit, "Purification and dehydration of methylal by pervaporation", J. Membr. Sci., 217, 159 (2003). https://doi.org/10.1016/S0376-7388(03)00125-X
  3. R. Y. M. Huang and C. K. Yeom, "Pervaporation separation of aqueous mixtures using crosslinked poly(vinyl alcohol)(PVA). II. Permeation of ethanol-water mixture", J. Membr. Sci., 51, 273 (1990). https://doi.org/10.1016/S0376-7388(00)80351-8
  4. R. Y. M. Huang and X. Feng, "Dehydration of isopropanol by pervaporation using aromatic polyetherimide membranes", Sep. Sci. Technol., 28, 2035 (1993). https://doi.org/10.1080/01496399308016732
  5. J. S. Kim, E. H. CHo, S. Y. Kang, S. I. Cheong, H. W. Park, C. H. Seo, and J. W. Rhim, "Pervaporation separation of water-isopropyl alcohol mixtures using PVA/PAN hollow fiber composite membranes", Membr. J., 23, 170 (2013).
  6. J. S. Kim, C. S. Lee, E. H. Cho, and J. W. Rhim, "Pervaporation separation of isopropyl alcohol-water mixtures using poly(dimethyl siloxane) membrane", Membr. J., 23, 245 (2013).
  7. J. S. Kim, C. Y. Park, H. W. Park, C. H. Seo, and J. W. Rhim, "Preparation of composite membranes via PVA/PAM solution coating onto hydrophilized PVDF hollow fiber membrane and their pervaporation separation of water-ethanol mixture", Membr. J., 23, 312 (2013).
  8. B. S. Cheon, S. I. Cheong, and J. W. Rhim, "Pilot test with pervaporation separation of aqueous IPA using a composite PEI/PDMS membran module", Membr. J., 25, 385 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.5.385
  9. Y. M. Xu, N. L. Le, J. Zuo, and T. S. Chung, "Aromatic polyimide and crosslinked thermally rearranged poly(benzoxazole-co-imide) membranes for isopropanol dehydration via pervaporation", J. Membr. Sci., 499, 317 (2016). https://doi.org/10.1016/j.memsci.2015.10.059
  10. N. Jullok, R. V. Hooghten, P. Luis, A. Volodin, C. V. Haesendonck, J. Vermant, and B. V. Bruggen, "Effect of silica nanopaticles in mixed matrix membranes for pervaporation dehydration of acetic acid aqueous solution: plant-inspired dewatering system", J. Clean. Prod., 112, 4879 (2016). https://doi.org/10.1016/j.jclepro.2015.09.019
  11. J. Zhao, Y. Zhu, F. Pan, G. He, C. Fang, K. Cao, R. Xing, and Z. Jiang, "Fabricating graphen oxide-based ultrathin hydrid membrane for pervaporation dehydration via layer-by-layer self-assembly driven by multiple interactions", J. Membr. Sci., 487, 162 (2015). https://doi.org/10.1016/j.memsci.2015.03.073
  12. D. Hua, Y. K. Ong, Y. Wang, T. Yang, and T. S. Chung, "ZIF-90/P84 mixed matrix membranes for pervaporation dehydration od isopropanol", J. Membr. Sci., 453, 155 (2014). https://doi.org/10.1016/j.memsci.2013.10.059
  13. M. Cho, C. Kong, and Y. Lee, "Prevaporation on n-butanol/water mixture though organophilic ZSM-5 zeolite membrane", Membr. J., 21, 336 (2011).
  14. J. S. Kim, H. W. Park, C. H. Seo, and J. W. Rhim, "Pervaporation separation characteristics for water-ethanol mixtures using porous hollow fiber PVA composite membranes". Membr. J., 23, 306 (2013).
  15. S. Y. Kang, J. S. Kim, E. H. Cho, and J. W. Rhim, "Effect of cross-linking agent on the acetic acid dehydration behaviors of PVA-PAN composite hollow fiber membranes", Membr. J., 24, 311 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.4.311
  16. B. S. Cheon, C. S. Lee, S. Y. Ha, and J. W. Rhim, "Study on the pervaporation separation of aqueous 1-butanol mixture using composite PEI/PDMS membrane", Membr. J., 25, 352 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.4.352
  17. D. W. Mangindaan, N. M. Woon, G. M. Shi, and T. S. Chung, "P84 polyimide membrane modified by a tripodal amine for enhanced pervaporation dehydration of acetone", Chem. Eng. Sci., 122, 14 (2015). https://doi.org/10.1016/j.ces.2014.09.014