The integral equation method is a powerful tool for numerical electromagnetic modeling. But the difficulty of this technique is the size of the linear equations, which demands excessive memory and calculation time to invert. This limitation of the integral equation method becomes critical in inverse problem. The conventional Born approximation, where the electric field in the anomalous body is approximated by the background field, is very rapid and easy to compute. However, the technique is inaccurate when the conductivity contrast between the body and the background medium is large. Quasi-linear, quasi-analytical and extended Born approximations are novel approaches to 3-D EM modeling based on the linearization of the integral equations for scattered EM field. These approximation methods are much less time consuming than full integral equation method and more accurate than conventional Born approximation. They we, however, still approximate methods for 3-D EM modeling. Iterative series methods such as modified Born, quasi-linear and quasi-analytical can be used to increase the accuracy of various approximation methods. Comparisons of numerical performance against a full integral equation and various approximation codes show that the iterative series methods are very accurate and almost always converge. Furthermore, they are very fast and easy to implement on a computer. In this study, extended Born series method is developed and it shows more accurate result than that of other series methods. Therefore, Iterative series methods, including extended Born series, open principally new possibilities for fast and accurate 3-D EM modeling and inversion.
Electrical resistivity surveys were conducted at two subsidence areas near and at limestone mine sites, respectively, in order to estimate their causes of subsidence and the regions of potential occurrence. In addition, the linkages of mine development with these subsidences were investigated by the rock engineering analysis. Two study areas have different geological setting. One study site is the land subsidence area, which contains clay and sandy soil near the limestone mine, The other study site is the land subsidence area located just above the mine, which is expected to be relevant to the limestone mine. As results of two-dimensional (2D) electrical resistivity surveys at the sites 1 and 2, low resistivity zones, which are 70 ~ 120 ohm-m and 20 ~ 50 ohm-m, respectively, were found under the subsidence zones. For the study site 1, the possibility of subsidence was confirmed by using three-dimensional (3D) inversion performed with 2D resistivity profiles. For the study site 2, the cause of the subsidence and the possibility of subsidence occurrence were confirmed by rock engineering computation with regard to measurement line 7 in which low resistivity accompanied by subsidence area was observed.
Kim, Dowan;Kim, Myungsun;Byun, Joongmoo;Seol, Soon Jee
Geophysics and Geophysical Exploration
/
v.18
no.2
/
pp.64-73
/
2015
Recently, hydraulic fracturing is used in various fields and microseismic monitoring is one of the best methods for judging where hydraulic fractures exist and how they are developing. When locating microseismic events using single vertical well data, distances from the vertical array and depths from the surface are generally decided using time differences between compressional (P) wave and shear (S) wave arrivals and azimuths are calculated using P wave hodogram analysis. However, in field data, it is sometimes hard to acquire P wave data which has smaller amplitude than S wave because microseismic data often have very low signal to noise (S/N) ratio. To overcome this problem, in this study, we developed a grid search algorithm which can find event location using all combinations of arrival times recorded at receivers. In addition, we introduced and analyzed the method which calculates azimuths using S wave. The tests of synthetic data show the inversion method using all combinations of arrival times and receivers can locate events without considering the origin time even using only single phase. In addition, the method can locate events with higher accuracy and has lower sensitivity on first arrival picking errors than conventional method. The method which calculates azimuths using S wave can provide reliable results when the dip between event and receiver is relatively small. However, this method shows the limitation when dip is greater than about $20^{\circ}$ in our model test.
A resistivity method has been applied to wide range of engineering and environmental problems with the help of automatic and precise data acquisition. Thus, more accurate modeling and inversion of time-lapse monitoring data are required since resistivity monitoring has been introduced to quantitatively find out subsurface changes With respect to time. Here, we used the finite element method (FEM) for 3D resistivity modeling since the method is easy to realize complex topography and arbitrary shaped anomalous bodies. In the FEM, the linear elements, also referred to as first order elements, have certain advantages of simple formulation and narrow bandwidth of system equation. However, the linear elements show the poor accuracy and slow convergence of the solution with respect to the number of elements or nodes. To achieve the higher accuracy of finite element solution, high order elements are generally used. In this study, we developed a 3D resistivity modeling program using high order Serendipity elements. Comparing the Serendipity element solutions for a cube model with the linear element solutions, we assured that the Serendipity element solutions are more accurate than the linear element solutions in the 3D resistivity modeling.
To describe the behavior of suspended-sediment particles in turbulent open-channel flows, the advection-diffusion equation or its simplified form has been used. Though this equation was derived upon several assumptions, only a few studies tried to evaluate the limit of the assumptions. The reason is that it is very difficult to measure turbulence in open-channel flows and to discriminate the velocities of water and sediment particles. The present study aims to measure the velocity profiles of water and sediment particles in open-channel flows by using PTV (Particle Tracking Velocimetry), a kind of PIV (Particle Image Velocimetry). The measured results showed that sediment particles moved slower than water tracers did in the outer region. In the present study, the amount of velocity-lag reached about $5\%$ of the mom flow velocity and the position of the maximum velocity-lag was $g/h\approx0.05\;(g^{+}=30\~50)$ The main cause of the velocity-lag of sediment particles seems that the sediment particles have larger density than water has. On the other hand, in the viscous sublayer, sediment particle has a larger velocity than water tracers. The reason of the inversion of velocity-lag may be due to the no-sleep condition of water at the solid boundaries.
Polyimide which is the glassy polymer has high chemical resistance, thermal stability and high mechanical property. In this study, the polyimide hollow fiber membranes were prepared by the dry-jet wet phase inversion in order to investigate the permeation porperties of the $H_2S$ and $CH_4$. The morphology of prepared hollow fiber membranes and their permeation behaviors of $H_2S$ and $CH_4$ before and after silicon coating were evaluated. The permeance of $H_2S$ and $H_2S/CH_4$ selectivity increased due to plasticization with increasing the feed pressure. The permeance of KSM03b and selectivity of KSM03d were highest among the three type membranes used this experiments. The permeance decreased but the $H_2S/CH_4$ selectivity increased with increasing the air gap. The permeance reduced after silicon coating. However, the selectivity increased and the selectivity of KSM03d was 275 at 7 atm.
We examined the regional 1-D deep resistivity structure of the Korean Peninsula using MT data acquired at seven sites located in the Kyongsang Basin and Kyonggi Massif. At the sites located in the Kyongsang Basin, surrounding sea distorts observed MT response and hence this distortion, so called "sea effect", is corrected using an iterative tensor stripping method. The 1-D layered inversion results for the seven MT sites reveal 4 layered structure, which is composed of 1) near surface layer, 2) upper crust, 3) lower crust and upper mantle, and 4) asthenosphere from the surface downward. Conrad interface, which is a boundary between upper and lower crust, is distinctly identified beneath all the MT sites. Conrad interface depth is estimated to about be 17km in the Kyongsang Basin and about 12km in the Kyonggi Massif, while the upper crust of the Kyongsang Basin is about 5 times more resistive than that of the Kyonggi Massif. Finally, asthenosphere is inferred to exist below a depth of approximately 100km with a resistivity of 200-300 ohm-m.
For quantitative evaluation of geotechnical engineering properties such as rippability and diggability, clear interpretation on the subsUJiace velocity structures should be preceded by figuring out top soil, weathered and soft rock layers, shape of basement, fracture zones, geologic boundary and etC. from the seismic refraction data. It is very important to set up suitable field parameters, which are the configuration of profile and its length, spacings of geophones and sources and topographic conditions, for increasing field data Quality. Geophone spacing of 3 to 5m is reconunended in the land slope area of house land development site. In refraction tomography technique, the number of source points should be more than a Cluarter of available channel number of instrument and the subsurface structure interpretation can be decreased the artifact of inversion by topographic effect. Compared with core logging data, it is shown that the velocity range of the soil is less than 700m/s, weathered rock 700~1,200m/s, soft rock 1,200~1,800m/s on the velocity tomogram section. And the upper limit of P-wave velocity for rippability is estimated 1,200 to 1,800m/s in land slope area of gneiss.
The Gravity-Geologic Method (GGM) was implemented for bathymetric determinations in the Drake Passage, Antarctica, using global marine Free-air Gravity Anomalies (FAGA) data sets by Sandwell and Smith (1997) and local echo sounding measurements. Of the 6548 bathymetric sounding measurements, two thirds of these points were used as control depths, while the remaining values were used as checkpoints. A density contrast of 9.0 gm/㎤ was selected based on the checkpoints predictions with changes in the density contrast assumed between the seawater and ocean bottom topographic mass. Control depths from the echo soundings were used to determine regional gravity components that were removed from FAGA to estimate the gravity effects of the bathymetry. These gravity effects were converted to bathymetry by inversion. In particular, a selective merging technique was developed to effectively combine the echo sounding depths with the GGM bathymetiy to enhance high frequency components along the shipborne sounding tracklines. For the rugged bathymetry of the research area, the GGM bathymetry shows correlation coefficients (CC) of 0.91, 0.92, and 0.85 with local shipborne sounding by KORDI, GEODAS, and a global ETOPO5 model, respectively. The enhanced GGM by selective merging shows imploved CCs of 0.948 and 0.954 with GEODAS and Smith & Sandwell (1997)'s predictions with RMS differences of 449.8 and 441.3 meters. The global marine FAGA data sets and other bathymetric models ensure that the GGM can be used in conjunction with shipborne bathymetry from echo sounding to extend the coverage into the unmapped regions, which should generate better results than simply gridding the sparse data or relying upon lower resolution global data sets such as ETOPO5.
A new technique of simultaneous inversion for 3-D seismic velocity structure by using direct, reflected, and refracted waves is applied to the southeast part of the Korean Peninsula including Pohang Basin, Kyongsang Basin and Ryongnam Massif. Pg, Sg, PmP, SmS, Pn, and Sn arrival times of 44 events with 554 seismic rays are inverted for locations and crustal structure. $6{\times}6$ with $0.5^{\circ}$ and 8 layers (4 km each layer) model was inverted. 3-D seismic crustal velocity tomography including eight sections from surface to Moho, ten profiles along latitude and longitude are analyzed. The results are as follows: 1) the average velocity and thickness of sediment are 5.04 km/s and 3-4 km, and the velocity of basement is 6.11 km/s. The shape of velocity in shallower layer is agreement with Bouguer gravity anomaly (Cho et al., 1997). 2) the velocities fluctuate strongly in the upper crust. The velocity distribution of the lower crust under Conrad appears basically horizontal. 3) the average depth of Moho is 30.4 km, and velocity is 8.01 km/s. 4) from the velocity and depth of the sediment, the thickness, velocity and form of the upper crust, and the depth and form of Moho, we can find the obvious differences among Ryongnam Massif, Kyongsang Basin and Pohang Basin. 5) the deep faults (a Ulsan series faults) near Kyongju and Pohang areas can be found to be normal and/or thrust faults with detachment extended to the bottom of the upper crust.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.