• 제목/요약/키워드: INCONEL 718

검색결과 112건 처리시간 0.032초

비접촉센서를 이용한 Inconel 718 밀링가공에서 공구상태 감시 (Tool Condition Monitoring with Non-contacting Sensors in Inconel 718 Milling Processes)

  • 최용기;황문창;김영준;박강휘;구준영;김정석
    • 한국생산제조학회지
    • /
    • 제25권6호
    • /
    • pp.445-451
    • /
    • 2016
  • The Inconel 718 alloy is a well-known super-heat-resistant alloy and a difficult-to-cut material. Inconel 718 with excellent corrosion and heat resistance is used in harsh environments. However, the heat generated is not released owing to excellent physical properties, making processes (e.g., adhesion and thermal fatigue) difficult. Tool condition monitoring in machining is significant in reducing manufacturing costs. The cutting tool is easily broken and worn because of the material properties of Inconel 718. Therefore, tool management is required to improve tool life and machinability. This study proposes a method of predicting the tool wear with non-contacting sensors (e.g., IR thermometer for measuring the cutting temperature and a microphone for measuring the sound pressure level in machining). The cutting temperature and sound pressure fluctuation according to the tool condition and cutting force are analyzed using experimental data. This experiment verifies the effectiveness of the non-contact measurement signals in tool condition monitoring.

용접재료별 단강 피스톤 크라운 용접부위의 부식특성에 대한 평가 (Evaluation of the corrosion property on the welded zone of forged steel piston crown with types of filler metals)

  • 문경만;원종필;이명훈;백태실;김진경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권4호
    • /
    • pp.409-417
    • /
    • 2014
  • 최근 수년 동안 유가의 현저한 상승으로 인하여 상선의 디젤 기관은 저질 중유를 주로 사용하게 되었다. 따라서 저질 중유의 사용 증가에 따른 디젤 기관의 연소실 배기가스 온도는 점차 상승하여 가혹한 부식 환경에 직면하게 되었다. 그 결과 연소실 주변의 모든 기관 부품들의 부식과 마모는 다른 기관 부품들에 비해서 심각하다. 그러므로 이들 부품들의 적절한 덧살 용접은 수명 연장을 위하여 경제적인 측면에서 매우 중요하다. 본 연구에서는 피스톤 크라운 재질로 통상 사용되는 단강에 4종류의 용접재료로 SMAW와 GTAW로 용접하였다. 실험은 모재, 열영향부 및 용접금속의 부식 특성을 35% 황산용액에서 부식전위, 양극분극 곡선, 사이클릭볼타모그램 및 임피던스 등의 전기화학적인 방법으로 하여 고찰하였다. Inconel 625, 718 용접재료의 경우 용접금속의 내식성이 가장 우수하였고, 모재의 내식성이 가장 좋지 않았으며, 반면에 1.25Cr-0.5Mo와 0.5Mo는 모재가 용접금속에 비해서 더 좋은 내식성을 나타내었다. 또한, 용접금속 중 Inconel 625가 가장 내식성이 우수하였으며, 그 다음으로 Inconel 718 용접재료로 나타났다. 경도 역시 용접금속이 상대적으로 모재, 열영향부에 비해서 높은 값을 나타내었다. 특히 Inconel 718 용접재료의 경우 다른 용접재료에 비하여 가장 높은 경도값을 나타내었다.

LENS 공정을 이용한 Inconel 718 초합금의 S45C 구조용강 위 적층 특성 고찰에 관한 기초 연구 (A Preliminary Study on the Lamination Characteristics of Inconel 718 Superalloy on S45C Structural Steel using LENS Process)

  • 김현식;이협;안동규
    • 한국기계가공학회지
    • /
    • 제20권1호
    • /
    • pp.16-24
    • /
    • 2021
  • A laser-engineered net shaping (LENS) process is a representative directed energy deposition process. Deposition characteristics of the LENS process are greatly dependent on the process parameters. The present paper preliminarily investigates deposition characteristics of Inconel 718 superalloy on S45C structural steel using a LENS process. The influence of process parameters, including the laser power and powder feed rate, on the characteristics of the bead formation and the dilution in the vicinity of the deposited region is examined through repeated experiments. A processing map and feasible deposition conditions are estimated from viewpoints of the aspect ratio, defect formation, and the dilution rate of the deposited bead. Finally, an appropriate deposition condition considering side angle, deposition ratio, and buy-to-fly (BTF) is predicted.

Inconel 718 의 고온 다축피로하중 하에서의 라체팅 거동 (Multiaxial ratcheting behavior of Inconel 718 at elevated temperature)

  • 김효신;김광수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.344-349
    • /
    • 2008
  • Ratcheting behavior of IN 718 was investigated at $649^{\circ}C$ under various proportional and non-proportional loading conditions with stress control. The material response was initially elastic but substantial plastic strain was developed as the material softened cyclically. Ratcheting strain was measured to near fatigue life, and is found to have three stages of development - primary, secondary (steady-state) and tertiary. The secondary stage dominates for most cases. Under the same equivalent stress amplitude and mean stress, it was revealed that circular path loading gives higher ratcheting rates and shorter lives than linear paths and that the more ratcheting occurs when the cyclic load is in the same direction as the mean stress. The ratcheting strain at failure depends not only on its rate but also on fatigue life itself, and it is not a primary life-determining factor.

  • PDF

선삭가공시의 인코넬 718합금의 표면거칠기 최적 절삭조건 (Optimal Cutting Conditions of Surface Roughness for Inconel 718 Alloy in Turning Operation)

  • 박종민;최원식;권순홍;차진훈
    • 한국기계가공학회지
    • /
    • 제8권4호
    • /
    • pp.48-53
    • /
    • 2009
  • Inconel 718 alloy, widely used as material of aircraft engine, has a good mechanical property in high temperature, strong anti-oxidation characteristics in oxidated current over $900^{\circ}C$, and also is not easily digested in the air containing sulfur, therefore, its usage as mechanical component is expanding rapidly. Even though Inconel alloy 718 is difficult to machine, it requires highly precise processing/machining to sustain its component quality of high accuracy. In this paper, general turning operation conditions are tested to select the best cutting process condition by measuring surface roughness through implementing experiments with orthogonal array of cutting speed, feeding speed and cutting depth as processing parameters based on the Taguchi method. Optimal turning operation conditions are extracted from the proposed experimental models.

  • PDF

고온 리튬용융염계 산화분위기에서 Inconel 합금의 부식거동 (Corrosion Behavior of Inconel Alloys in a Hot Lithium Molten Salt under an Oxidizing Atmosphere)

  • 조수행;서중석;윤지섭;박성원
    • 한국재료학회지
    • /
    • 제16권9호
    • /
    • pp.557-563
    • /
    • 2006
  • The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. So, it is essential to choose the optimum material for the process equipment handling molten salt. In this study, corrosion behavior of Inconel 713LC, MA 754, X-750 and 718 in the molten salt $LiCl-Li_2O$ under an oxidizing atmosphere was investigated at $650^{\circ}C$ for $72{\sim}216$ hours. Inconel 713LC alloy showed the highest corrosion resistance among the examined alloys. Corrosion products of Inconel 713LC were $Cr_2O_3,\;NiCr_2O_4$ and NiO, and those of Inconel MA 754 were $Cr_2O_3\;and\;Li_2Ni_8O_{10}$ while $Cr_2O_3,\;NiFe_2O_4\;and\;CrNbO_4$ were produced from Inconel 718. Also, corrosion products of Inconel X-750 were found to be $Cr_2O_3,\;NiFe_2O_4\;and\;(Cr,Nb,Ti)O_2$. Inconel 713LC showed local corrosion behavior and Inconel MA 754, 718, X-750 showed uniform corrosion behavior.

LASER SURFACE ANNEALING FOR IMPROVING HYDROGEN EMBRlTTLEMENT RESISTANCE OF AGED INCONEL 718: EVALUATION OF THE EFFECTS OF PRECIPITATES

  • Liu, Liufa;Tanaka, Katsumi;Hirose, Akio;Kobayashi, Kojiro F.
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.570-576
    • /
    • 2002
  • Application of the aged Inconel 718 in hydrogen environment is seriously restraint by its high hydrogen embrittlement (HE) sensitivity. m previous researches, we have suggested the possibility and applicability of the laser surface annealing (LSA) process in improving the HE resistance of this alloy. Sequentially, a study on the effects of the precipitates in the Inconel 718 on its HE sensitivity was conducted in this research. Firstly, flat bar specimens were heat-treated to obtain various kinds of precipitation microstructures concerning the ${\gamma}$" phase and the 6 phase. Hydrogen was charged into the specimen by a cathodic charging process. The loss in reduction of area (RA) caused by hydrogen charging was used to assess the HE sensitivity. The HE sensitivity of the alloy was lowered with decreasing the volume fraction of ${\gamma}$". Moreover, it was possible to increase the HE resistance of the aged alloy by dissolving the $\delta$ phase, keeping the strength at the same level as that of the common aged alloy. Thus, we concluded that both the $\delta$ phase and the ${\gamma}$" phase affected the HE sensitivity of Inconel 718. Next, two kinds of notch tensile specimens were fabricated, one kind having $\delta$ phase and the other having no $\delta$ phase. All these specimens were aged via the same aging heat treatment process. The LSA process annealed a thin layer of the notch bottom of each specimen. One specimen of each kind was charged with hydrogen by the cathodic hydrogen charging process. Loss in the notch tensile strength (NTS) caused by hydrogen was used to evaluate the HE sensitivity. It was found that while the HE sensitivity of conventionally aged Inconel 718 was decreased by the LSA process, the HE sensitivity of the $\delta$-free aged Inconel 718 could further be decreased. Therefore, for applications in hydrogen environments, it is possible to fabricate alloys with both good HE resistance and high strength by controlling the precipitation conditions, and to improve HE resistance further via applying the LSA process.

  • PDF