Browse > Article
http://dx.doi.org/10.3740/MRSK.2006.16.9.557

Corrosion Behavior of Inconel Alloys in a Hot Lithium Molten Salt under an Oxidizing Atmosphere  

Cho, Soo-Hang (Korea Atomic Energy Research Institute)
Seo, Chung-Seok (Korea Atomic Energy Research Institute)
Yoon, Ji-Sup (Korea Atomic Energy Research Institute)
Park, Seoung-Won (Korea Atomic Energy Research Institute)
Publication Information
Korean Journal of Materials Research / v.16, no.9, 2006 , pp. 557-563 More about this Journal
Abstract
The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. So, it is essential to choose the optimum material for the process equipment handling molten salt. In this study, corrosion behavior of Inconel 713LC, MA 754, X-750 and 718 in the molten salt $LiCl-Li_2O$ under an oxidizing atmosphere was investigated at $650^{\circ}C$ for $72{\sim}216$ hours. Inconel 713LC alloy showed the highest corrosion resistance among the examined alloys. Corrosion products of Inconel 713LC were $Cr_2O_3,\;NiCr_2O_4$ and NiO, and those of Inconel MA 754 were $Cr_2O_3\;and\;Li_2Ni_8O_{10}$ while $Cr_2O_3,\;NiFe_2O_4\;and\;CrNbO_4$ were produced from Inconel 718. Also, corrosion products of Inconel X-750 were found to be $Cr_2O_3,\;NiFe_2O_4\;and\;(Cr,Nb,Ti)O_2$. Inconel 713LC showed local corrosion behavior and Inconel MA 754, 718, X-750 showed uniform corrosion behavior.
Keywords
corrosion behavior; hot corrosion; lithium molten salt;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Skashita and N. Sato, Corros, Sci., 17, 473 (1977)   DOI   ScienceOn
2 C. R. Crayton and Y. C, Lu, Corros. Sci., 29, 7 (1989)   DOI   ScienceOn
3 S. Ling, T. A. Rahmel and R. Petkovic-Luton, Oxid. Met., 40, 180 (1993)
4 H. R. Copson, J. Electrochem. Soc., 100,257 (1953)   DOI
5 F. Colom and A. Bodalo, Corros, Sci., 12, 73 (1972)
6 W. H. Smyrl and M. J. Blanckburn, Corrosion, 31, 370 (1972)
7 C. B. Gill, M. E. Staumanis and W. E. Schlechten, J. Electrochem. Soc., 102, 42 (1955)   DOI
8 E. T. Turkdogan, Physical Chemistry of High Temperature Technology, Academic Press, New York (1980)
9 H. Izuta and Y. Kornura, J. Jpn. Inst. Mct., 58, 1196 (1994)
10 Y. Harada, Jpn. Therm, Spraying Soc., 33, 128 (1996)
11 G. C. Wood, Corros. Sci., 2, 173 (1962)   DOI   ScienceOn
12 F. H. Stott, G. C. Wood and J. Stringer, Oxid. Met., 32, 113 (1989)
13 G. C. Allen and R. K. Wild, J. Electron. Spectroscopy, 5, 409 (1974)   DOI   ScienceOn
14 D. Caplan and M, Cohen, Corrosion, 15, 141 (1959)
15 F. H. Stott, G. C. Wood, Y. Shida, D. P. Whittle and B. D. Bastow, Corros. Sci., 21, 599 (1981)   DOI   ScienceOn
16 C. W. Tuck, M. Odgers and K. Sachs, Corros. Sci., 9, 271 (1969)   DOI   ScienceOn
17 I. Kvernes, M. Oliveira and P. Kofstad, Corros. Sci., 17, 237 (1977)   DOI   ScienceOn
18 H. H. Davis, H. C. Graham and I. A. Krernes, Oxid, Met., 3,431 (1971)   DOI
19 S. Karneswari, Oxid. Met., 6, 33 (1973)
20 F. J. Kohl, G. J. Santoro, C. A .Stearns, G. C. Fryburg and D. E. Rosner, J. Electrochem. Soc., 126, 1054 (1979)   DOI
21 A. Rahmel and H. J. Engell, Corrosion, 18, 320 (1969)
22 M. Spiegel, P. Biedenkipf and H. J. Grabke, Corros, Sci., ?39, 1193 (1997)   DOI   ScienceOn
23 S. Mitsushima, N. Kamiya and K. I. Ota, J. Electrochem. Soc., 137,2713 (1990)   DOI
24 M. M. Kochergin and G. I. Stolyarava, J. Appl. Chem. USSR, 29, 789 (1956)