• Title/Summary/Keyword: IL-4 receptor

Search Result 429, Processing Time 0.023 seconds

Fimasartan attenuates renal ischemia-reperfusion injury by modulating inflammation-related apoptosis

  • Cho, Jang-Hee;Choi, Soon-Youn;Ryu, Hye-Myung;Oh, Eun-Joo;Yook, Ju-Min;Ahn, Ji-Sun;Jung, Hee-Yeon;Choi, Ji-Young;Park, Sun-Hee;Kim, Chan-Duck;Kim, Yong-Lim
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.6
    • /
    • pp.661-670
    • /
    • 2018
  • Fimasartan, a new angiotensin II receptor antagonist, reduces myocyte damage and stabilizes atherosclerotic plaque through its anti-inflammatory effect in animal studies. We investigated the protective effects of pretreatment with fimasartan on ischemia-reperfusion injury (IRI) in a mouse model of ischemic renal damage. C57BL/6 mice were pretreated with or without 5 (IR-F5) or 10 (IR-F10) mg/kg/day fimasartan for 3 days. Renal ischemia was induced by clamping bilateral renal vascular pedicles for 30 min. Histology, pro-inflammatory cytokines, and apoptosis assays were evaluated 24 h after IRI. Compared to the untreated group, blood urea nitrogen and serum creatinine levels were significantly lower in the IR-F10 group. IR-F10 kidneys showed less tubular necrosis and interstitial fibrosis than untreated kidneys. The expression of F4/80, a macrophage infiltration marker, and tumor necrosis factor $(TNF)-{\alpha}$, decreased in the IR-F10 group. High-dose fimasartan treatment attenuated the upregulation of $TNF-{\alpha}$, interleukin $(IL)-1{\beta}$, and IL-6 in ischemic kidneys. Fewer TUNEL positive cells were observed in IR-F10 compared to control mice. Fimasartan caused a significant decrease in caspase-3 activity and the level of Bax, and increased the Bcl-2 level. Fimasartan preserved renal function and tubular architecture from IRI in a mouse ischemic renal injury model. Fimasartan also attenuated upregulation of inflammatory cytokines and decreased apoptosis of renal tubular cells. Our results suggest that fimasartan inhibited the process of tubular injury by preventing apoptosis induced by the inflammatory pathway.

Effects of Dietary Fructose and Glucose on Hepatic Steatosis and NLRP3 Inflammasome in a Rodent Model of Obesity and Type 2 Diabetes (비만 및 제2형 당뇨병 쥐 모델에서 과당과 포도당의 섭취가 지방간과 NLRP3 염증조절결합체에 미치는 영향)

  • Lee, Hee Jae;Yang, Soo Jin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.10
    • /
    • pp.1576-1584
    • /
    • 2013
  • This study is carried out to assess the relative effects of different doses of dietary glucose or fructose on non-alcoholic fatty liver disease (NAFLD) and hepatic metaflammation in a rodent model of type 2 diabetes. KK/HlJ male mice were fed experimental diets as follows: 1) control (CON), 2) moderate glucose (MG, 30% of total calories as glucose), 3) high glucose (HG, 60% of total calories as glucose), 4) moderate fructose (MF, 30% of total calories as fructose), and 5) high fructose (HF, 60% of total calories as fructose) for three weeks. Food intake was not affected by treatments. Compared with HF, HG not only increased serum fasting glucose and area under the curve during oral glucose tolerance test, but also decreased the levels of serum insulin and adiponectin. It indicated that glucose control was complicated via high glucose intake. High fructose treatment led to increased triglyceride in the serum and liver. In comparison to HG, high fructose diet activated NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome consisting of apoptosis-associated speck-like protein containing a CARD (ASC), NLRP3 and caspase 1, which increases interleukin (IL)-$1{\beta}$ maturation and secretion. The activation of NLRP3 inflammasome was accompanied by increased levels of tumor necrosis factor alpha (TNF-${\alpha}$) and IL-6. However, the expression of NLRP3 inflammasome components and pro-inflammatory cytokines did not differ between CON and HG. These data suggested that dietary fructose triggers hepatic metaflammation accompanied by NLRP3 inflammasome activation and has deleterious effects on NAFLD.

Ginsenoside Rb1 and compound K improve insulin signaling and inhibit ER stress-associated NLRP3 inflammasome activation in adipose tissue

  • Chen, Weijie;Wang, Junlian;Luo, Yong;Wang, Tao;Li, Xiaochun;Li, Aiyun;Li, Jia;Liu, Kang;Liu, Baolin
    • Journal of Ginseng Research
    • /
    • v.40 no.4
    • /
    • pp.351-358
    • /
    • 2016
  • Background: This study was designed to investigate whether ginsenoside Rb1 (Rb1) and compound K (CK) ameliorated insulin resistance by suppressing endoplasmic reticulum (ER) stress-induced inflammation in adipose tissue. Methods: To induce ER stress, epididymal adipose tissue from mice or differentiated 3T3 adipocytes were exposed to high glucose. The effects of Rb1 and CK on reactive oxygen species production, ER stress, TXNIP/NLRP3 inflammasome activation, inflammation, insulin signaling activation, and glucose uptake were detected by western blot, emzyme-linked immunosorbent assay, or fluorometry. Results: Rb1 and CK suppressed ER stress by dephosphorylation of $IRE1{\alpha}$ and PERK, thereby reducing TXNIP-associated NLRP3 inflammasome activation in adipose tissue. As a result, Rb1 and CK inhibited IL-$1{\beta}$ maturation and downstream inflammatory factor IL-6 secretion. Inflammatory molecules induced insulin resistance by upregulating phosphorylation of insulin receptor substrate-1 at serine residues and impairing insulin PI3K/Akt signaling, leading to decreased glucose uptake by adipocytes. Rb1 and CK reversed these changes by inhibiting ER stress-induced inflammation and ameliorating insulin resistance, thereby improving the insulin IRS-1/PI3K/Akt-signaling pathway in adipose tissue. Conclusion: Rb1 and CK inhibited inflammation and improved insulin signaling in adipose tissue by suppressing ER stress-associated NLRP3 inflammation activation. These findings offered novel insight into the mechanism by which Rb1 and CK ameliorate insulin resistance in adipose tissue.

Beyond the Molecular Facilitator, CD82: Roles in Metastasis Suppressor, Stem Cell Niche, Muscle Regeneration, and Angiogenesis (분자 촉진제를 넘어, CD82: 전이억제자, 줄기세포 니쉬, 근육 재생 및 혈관신생에서의 역할)

  • Lee, Hyun-Chae;Han, Jung-Hwa;Hur, Jin
    • Journal of Life Science
    • /
    • v.31 no.9
    • /
    • pp.856-861
    • /
    • 2021
  • CD82/KAI1, identified as a metastasis suppressor, was initially known only as a molecular facilitator, but its various functions have recently been revealed. CD82 plays an important role in the stem-progenitor cell, angiogenesis, and muscle. We would like to introduce the recently reported functions and roles of CD82 in this review. CD82 is a member of the tetraspanin family, which consists of four transmembrane domains. The interaction between CD82 and cell adhesion molecules suppresses the metastasis of cancer. CD82 regulates the cell cycle of stem-progenitor cells in the stem cell niche. In the bone marrow, CD82 is expressed on long-term repopulating hematopoietic stem cells (LT-HSCs), which show multipotent differentiation potential. The interaction between CD82 and Duffy antigen receptor for chemokines (DARC) induces quiescence in LT-HSCs. CD82 also regulates Rac1 activity, resulting in the homing and engraftment of HSCs into the bone marrow niche. Besides, CD82 maintains the differentiation potential of muscle stem cells and prevents angiogenesis by inhibiting the expression of cytokines, such as IL-6 and VEGF and adhesion molecules in endothelial cells. CD82 is a key membrane protein that distinguishes the hierarchy of stem-progenitor cells, and is also important for amplification and verification of cellular resources. Further studies on the function of CD82 in various organs and cells are expected to advance cell biology and cell therapy.

Anti-inflammatory and Antioxidative Effects of Lotus Root Extract in LPS-PG-Stimulated Human Gingival Fibroblast-1 Cells (치주염 원인균 LPS-PG로 유도된 인체 치은섬유아세포에서 연뿌리 추출물에 대한 항염증 및 항산화 효과)

  • Lee, Young-Kyung;Kim, Chul Hwan;Jeong, Dae Won;Lee, Ki Won;Oh, Young Taek;Kim, Jeong Il;Jeong, Jin-Woo
    • Korean Journal of Plant Resources
    • /
    • v.35 no.5
    • /
    • pp.565-573
    • /
    • 2022
  • Gingival inflammation is one of the main causes that can be related to various periodontal diseases. Human gingival fibroblast (HGF) is the major constituent in periodontal connective tissue and secretes various inflammatory mediators, such as nitric oxide (NO) and prostaglandin E2 (PGE2), upon lipopolysaccharide stimulation. This study is aimed at investigating the anti-inflammatory and antioxidative activities of Lotus Root extract (LRE) in Porphyromonas gingivalis derived lipopolysaccharide (LPS-PG)-stimulated HGF-1 cells. The concentration of NO and PGE2, as well as their responsible enzymes, inducible NO synthase (iNOS), and cyclooxygenase-2 (COX-2), was analyzed by Griess reaction, ELISA, and western blot analysis. LPS-PG sharply elevated the production and protein expression of inflammatory mediators, which were significantly attenuated by LRE treatment in a dose-dependent manner. LRE treatment also suppressed activation of Toll-like receptor 4 (TLR4)/myeloid differentiation primary response gene 88 (MyD88) and nuclear factor-κB (NF-κB) in LPS-PG-stimulated HGF-1 cells. In addition, one of phase II enzyme, NAD(P)H quinone dehydrogenase (NQO)-1, and its transcription factor, Nuclear factor erythroid 2-related factor 2 (Nrf2), were significantly induced by LRE treatment. Consequently, these results suggest that LRE ameliorates LPS-PG-induced inflammatory responses by attenuating TLR4/MyD88-mediated NF-κB, and activating NQO-1/Nrf2 antioxidant response element signaling pathways in HGF-1 cells.

1-Deoxynojirimycin Isolated from a Bacillus subtilis Stimulates Adiponectin and GLUT4 Expressions in 3T3-L1 Adipocytes

  • Lee, Seung-Min;Do, Hyun Ju;Shin, Min-Jeong;Seong, Su-Il;Hwang, Kyo Yeol;Lee, Jae Yeon;Kwon, Ohsuk;Jin, Taewon;Chung, Ji Hyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.5
    • /
    • pp.637-643
    • /
    • 2013
  • We have demonstrated that 1-deoxynojirimycin (DNJ) isolated from Bacillus subtilis MORI could enhance the levels of adiponectin and its receptors in differentiated 3T3-L1 adipocytes, which has been shown to be effective in lowering blood glucose levels and enhancing insulin sensitivity. DNJ was not toxic to differentiated 3T3-L1 adipocytes for up to a concentration of $5{\mu}M$. In terms of expression levels of adiponectin and its receptors (AdipoR1 and AdipoR2), DNJ in concentrations as low as $0.5{\mu}M$ elevated both mRNA and protein levels of adiponectin and transcript levels of AdipoR1 and AdipoR2. In addition, DNJ increased phosphorylation of 5' adenosine monophosphate-activated protein kinase (AMPK) in a statistically significant manner. Finally, treatment with DNJ resulted in increased mRNA expression of glucose transporter 4 (GLUT4), which encodes for a glucose transporter, along with a significant increase in glucose uptake into the adipocytes based on results of a 2-deoxy-D-[$^3H$] glucose uptake assay. Our findings indicate that DNJ may greatly facilitate glucose uptake into adipose tissues by increasing the action of adiponectin via its up-regulated expression as well as its receptor genes. In addition, the glucose-lowering effects of DNJ may be achieved by an increased abundance of GLUT4 protein in the plasma membrane, as a consequence of the increased transcript levels of the GLUT4 gene and the activation of AMPK.

The biologic effects of safflower(Carthamus tinctorius $Linn\acute{e}$) extract and Dipsasi Radix extract on periodontal ligament cells and osteoblastic cells (홍화 추출물이 치주인대세포, 조골세포 활성도에 미치는 영향)

  • Rhyu, In-Chul;Lee, Yong-Moo;Ku, Young;Bae, Ki-Whan;Chung, Chong-Pyoung
    • Journal of Periodontal and Implant Science
    • /
    • v.27 no.4
    • /
    • pp.867-882
    • /
    • 1997
  • Safflower(Carthamus tinctorius $Linn\acute{e}$ has been traditionally used for the treatment of blood stasis, and Dipsasi Radix has been used as a drug for fracture in Chinese medicine. The purpose of present study was to examine the biologic effects of safflower extract and Disasi radix extracts on the periodontal. ligament cells and osteoblastic cells and on the wound healing of rat calvarial defect. The ethanolic extract of safflower blossom, safflower seed and Dipsasi Radix(125, 250, and 500 ${\mu}g/ml$) were prepared as test group, and PDGF-BB(lOng/ml) and unsafonifiable fraction of Zea Mays L.(125, 250, and 500 ${\mu}g/ml$) were employed as positive control. The effects of each agents on the growth and survival, ALPase activity, expression of PDGF-BB receptor, chemotactic response of PDL cell and ATCC human osteosarcoma MG63 cells in vitro were examined. The tissue regenerative effect of each extracts was evaluated by histomorphometric measuring of newly formed bone on the 8mm defect in rat calvaria after oral administration of 3 different dosages groups : 0.02, 0.1 and 0.35g/kg, per day. It was also employed the same dosages of unsaponifiable fraction of Zea Mays L. as positive controls. Safflower blossom extract, safflower seed extract, and Dipsasi Radix extract stimulate the cellular activity of MG63 cells in concentration range of $125-500{\mu}g/ml$, and safflower bolssom extract and safflower seed extract stimulate also the cellular activity of periodontal ligament cells in concentration range of $250-500{\mu}g/ml$. In activity of ALPase, $250-500{\mu}g/ml$ of safflower blossom extracts showed significant stimulating effects on MG63 cells, and the same concentration range of safflower seed extracts showed significant effect on periodontal ligament cells. In the recovery on PDGF-BB receptor expression which was depressed by $IL-1{\beta}$, $125-250{\mu}g/ml$ of safflower blossom extracts and $250-500{\mu}g/ml$ of safflower seed extracts showed significant increasing effect on MG63 cells, and $500{\mu}g/ml$ of safflower blossom extract and $250-500{\mu}g/ml$ of safflower seed extracts showed significant effect on periodontal ligament cells. In chemotactic response, among all tested group, safflower seed extracts only were chemotactic to MG63 cells and periodontal ligament cells in concentration range of $125-500{\mu}g/ml$. Also in the view of bone regeneration in rat calvarial defect model, the only group that was orally administrated 0.35g/kg, day of safflower seed extract showed significant new bone formation. These results suggested that safflower extracts might have a potential possibilities as an useful drug for adjunct to treatment for regeneration of periodontal defect.

  • PDF

Inhibitory effect of water-soluble mulberry leaf extract on hepatic lipid accumulation in high-fat diet-fed rats via modulation of hepatic microRNA-221/222 expression and inflammation (고지방식이 급여 쥐에서 수용성 뽕나무 잎 추출물의 간 microRNA-221/222 발현 및 염증 조절을 통한 간 지질 축적억제 효과)

  • Lee, Mak-Soon;Kim, Cheamin;Ko, Hyunmi;Kim, Yangha
    • Journal of Nutrition and Health
    • /
    • v.55 no.2
    • /
    • pp.227-239
    • /
    • 2022
  • Purpose: This study investigated the effects of water-soluble mulberry leaf extract (ME) on hepatic lipid accumulation in high-fat diet-fed rats via the regulation of hepatic microRNA (miR)-221/222 and inflammation. Methods: Male Sprague-Dawley rats (4 weeks old) were randomly divided into 3 groups (n = 7 each) and fed with 10 kcal% low-fat diet (LF), 45 kcal% high-fat diet (HF), or HF + 0.8% ME for 14 weeks. Lipid profiles and cytokine levels of the liver and serum were measured using commercial enzymatic colorimetric and enzyme-linked immunosorbent assay, respectively. The messenger RNA (mRNA) and miR levels in liver tissue were assayed by real-time quantitative reverse-transcription polymerase chain reaction. Results: Supplementation of ME reduces body weight and improves the liver and serum lipid profiles as compared to the HF group. The mRNA levels of hepatic peroxisome proliferator-activated receptor-gamma, sterol regulatory element binding protein-1c, fatty acid synthase, and fatty acid translocase, which are genes involved in lipid metabolism, were significantly downregulated in the ME group compared to the HF group. In contrast, the mRNA level of hepatic carnitine palmitoyl transferase-1 (involved in fatty acid oxidation) was upregulated by ME supplementation. Furthermore, administration of ME significantly downregulated the mRNA levels of inflammatory mediators such as hepatic tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), monocyte chemoattractant protein-1, and inducible nitric oxide synthase. The serum levels of TNF-α, IL-6, and nitric oxide were also significantly reduced in ME group compared to the HF group. Expression of hepatic miR-221 and miR-222, which increase in the inflammatory state of the liver, were also significantly inhibited in the ME group compared to the HF group. Conclusion: These results indicate that ME has the potential to improve hepatic lipid accumulation in high-fat diet-fed rats via modulation of inflammatory mediators and hepatic miR-221/222 expressions.

The Clinical Significance of Serum CD23 and CD25 in Chronic Cough Patients (만성 기침환자에서 혈청 CD23와 CD25 측정의 임상적 의의)

  • Choi, Jae-Chol;Park, Young-Bum;Jee, Hyun-Suk;Kim, Jae-Yeol;Park, In-Won;Choi, Byoung-Whui;Hue, Sung-Ho
    • Tuberculosis and Respiratory Diseases
    • /
    • v.48 no.4
    • /
    • pp.471-477
    • /
    • 2000
  • Background : Coughing is the most common complaint for which patients seek medical service. When caughing continues over 3 weeks in non-smokers who do not take cough-provoking drugs, they are classified as patients with chronic cough. Three well known main causes of chronic caugh are postnasal drip syndrome, bronchial asthma and gastroesophaseal reflux disease. Among them, postnasal drip syndrome is reported to be the most common cause of all in chronic cough diseases, and allergic inflammation plays an important role in the pathogenesis of postnasal drip syndrome. CD23 and CD25 which are low affinity receptor for IgE and IL-2 receptor alpha, respectively, are closely related to allergic inflammation and their roles were evaluated in chronic cough patients. Methods : We evaluated 105 patients with chronic cough and selected 56 patients for measurement of serum CD23 & CD25 levels. We selected 10 normal, medical students for comparison of serum CD23 & CD25 levels. Result : The postnasal drip syndrome was found to be the most common cause of chronic cough. Serum CD23 and CD25 did not increase in chronic cough patient compared to normal controls. However in bronchial asthma patient, serum CD23 level was increased relative to normal control (p<0.05). Conclusion : In bronchial asthma presented as chronic cough, lymphocyte mediated allergic inflammation may related with the pathogenesis of the disease.

  • PDF

Mechanism of Relaxation of Rat Aorta by Scopoletin; an Active Constituent of Artemisia Capillaris

  • Kwon Eui Kwang;Jin Sang Sik;oChoi Min H;Hwang Kyung Taek;Shim Jin Chan;Hwang Il Taek;Han Jong Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.2
    • /
    • pp.389-396
    • /
    • 2002
  • In the present work, we examined the mechanism of vasorelaxant effect of scopoletin, an active constituent of Artemisia capillaris on rat thoracic descending aortic rings. Scopoletin induced a concentration-dependent relaxation in rat thoracic descending aortic rings pre-contracted with phenylephrine (EC/sub 50/ = 238.94±37.4 μM), while it was less effective in rat thoracic descending aortic rings precontracted with high potassium solution (KCI 30 mM). Vasorelaxation by scopoletin was significantly inhibited after endothelial removal, but recovered at high concentration. Pretreatment of rat thoracic descending aortic rings with N/sup G/-nitro-L-arginine (100 μM), a nitric oxide synthase inhibitor, and atropine (1 μM), a muscarinic receptor antagonist, significantly inhibited scopoletin-induced relaxation of rat thoracic descending aortic rings. Neither indomethacin (3 μM), an inhibitor of cydooxygenase, nor propranolol (1 μM), a β -adrenoceptor antagonist, modified the effect of scopoletin. The combination of N/sup G/ -nitro-L-arginine (100 μ M) and miconazole (10 μ M), an inhibitor of cytochrome P 450, did not modify the effect of scopoletin, when compared with pretreatment with N/sup G/-nitro-L-arginine(100 μM) alone. Vasorelaxant effect of scopoletin was inverted by pretreatment with diltiazem (10 μM), a Ca/sup 2+/-channel blocker, at low concentration, while restored at high concentration. Apamin (K/sub ca/-channel blocker, 1 μM), 4-aminopyridine (4-AP, K/sub v/-channel blocker, 1 mM), and tetrodotoxin (TTX, Na/sup +/-channel blocker 1 μM) potentiated the vasorelaxant effect of scopoledn, but glibendamide (K/sub ATP/-channel blocker, 10 μM), tetraetylammonium(TEA, non-selective K-channel blocker, 10 mM) did not affect the relaxation of scopoletin. Free radical scavengers (TEMPO, catalase, mannitol) did not modify vascular tone. These results suggest that nitric oxide, Ca/sup 2+/ -channels play a role in endothelium-dependent relaxations to scopoletin in rat aortas, that apamin, 4-AP, TTX but not glibenclamide, TEA potentiated relaxation to scopoletin mediated by these channels, and that free radicals do not concern to the vasorelaxant effect of scopoletin.