Browse > Article
http://dx.doi.org/10.4014/jmb.1209.09043

1-Deoxynojirimycin Isolated from a Bacillus subtilis Stimulates Adiponectin and GLUT4 Expressions in 3T3-L1 Adipocytes  

Lee, Seung-Min (Department of Food and Nutrition, College of Human Ecology, Yonsei University)
Do, Hyun Ju (Department of Food and Nutrition and Institute of Health Sciences, Korea University)
Shin, Min-Jeong (Department of Food and Nutrition and Institute of Health Sciences, Korea University)
Seong, Su-Il (R&D Center for Life Science, Biotopia Co., Ltd.)
Hwang, Kyo Yeol (R&D Center for Life Science, Biotopia Co., Ltd.)
Lee, Jae Yeon (R&D Center for Life Science, Biotopia Co., Ltd.)
Kwon, Ohsuk (Systems and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology)
Jin, Taewon (Cardiovascular Product Evaluation Center, Cardiovascular Research Institute, Yonsei University College of Medicine)
Chung, Ji Hyung (Cardiovascular Product Evaluation Center, Cardiovascular Research Institute, Yonsei University College of Medicine)
Publication Information
Journal of Microbiology and Biotechnology / v.23, no.5, 2013 , pp. 637-643 More about this Journal
Abstract
We have demonstrated that 1-deoxynojirimycin (DNJ) isolated from Bacillus subtilis MORI could enhance the levels of adiponectin and its receptors in differentiated 3T3-L1 adipocytes, which has been shown to be effective in lowering blood glucose levels and enhancing insulin sensitivity. DNJ was not toxic to differentiated 3T3-L1 adipocytes for up to a concentration of $5{\mu}M$. In terms of expression levels of adiponectin and its receptors (AdipoR1 and AdipoR2), DNJ in concentrations as low as $0.5{\mu}M$ elevated both mRNA and protein levels of adiponectin and transcript levels of AdipoR1 and AdipoR2. In addition, DNJ increased phosphorylation of 5' adenosine monophosphate-activated protein kinase (AMPK) in a statistically significant manner. Finally, treatment with DNJ resulted in increased mRNA expression of glucose transporter 4 (GLUT4), which encodes for a glucose transporter, along with a significant increase in glucose uptake into the adipocytes based on results of a 2-deoxy-D-[$^3H$] glucose uptake assay. Our findings indicate that DNJ may greatly facilitate glucose uptake into adipose tissues by increasing the action of adiponectin via its up-regulated expression as well as its receptor genes. In addition, the glucose-lowering effects of DNJ may be achieved by an increased abundance of GLUT4 protein in the plasma membrane, as a consequence of the increased transcript levels of the GLUT4 gene and the activation of AMPK.
Keywords
1-Deoxynojirimycin; adipocytes; adiponectin; AdipoR; AMPK;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Bauer, S., J. Weigert, M. Neumeier, J. Wanninger, A. Schaffler, A. Luchner, A. A. Schnitzbauer, C. Aslanidis, and C. Buechler. 2010. Low-abundant adiponectin receptors in visceral adipose tissue of humans and rats are further reduced in diabetic animals. Arch. Med. Res. 41: 75-82.   DOI   ScienceOn
2 Bays, H. E. 2009. "Sick fat," metabolic disease, and atherosclerosis. Am. J. Med. 122: 26-37.   DOI   ScienceOn
3 Hardick, D. J., D. W. Hutchinson, S. J. Trew, and E. M. H. Wellington. 1991. The biosynthesis of deoxynojirimycin and deoxymannonojirimycin in Streptomyces subrutilus. J. Chem. Soc. Chem. Commun. 10: 729-730.
4 Berg, A. H., T. P. Combs, and P. E. Scherer. 2002. ACRP30/adiponectin: An adipokine regulating glucose and lipid metabolism. Trends Endocrinol. Metab. 13: 84-89.   DOI   ScienceOn
5 Cho, Y. S., Y. S. Park, J. Y. Lee, K. D. Kang, K. Y. Hwang, and S. I. Seong. 2008. Hypoglycemic effect of culture broth of Bacillus subtilis S10 producing 1-deoxynojirimycin. J. Korean Soc. Food Sci. Nutr. 37: 1401-1407.   DOI   ScienceOn
6 Goldstein, B. J. and R. Scalia. 2004. Adiponectin: A novel adipokine linking adipocytes and vascular function. J. Clin. Endocrinol. Metab. 89: 2563-2568.   DOI   ScienceOn
7 Hardick, D. J. and D. W. Hutchinson. 1993. The biosynthesis of 1-deoxynojirimycin in Bacillus subtilis var niger. Tetrahedron 49: 6707-6716.   DOI   ScienceOn
8 Holland, W. L., J. T. Brozinick, L. P. Wang, E. D. Hawkins, K. M. Sargent, Y. Liu, et al. 2007. Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell Metab. 5: 167-179.   DOI   ScienceOn
9 Kadowaki, T., T. Yamauchi, N. Kubota, K. Hara, K. Ueki, and K. Tobe. 2006. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J. Clin. Invest. 116: 1784-1792.   DOI   ScienceOn
10 Kang, K. D., Y. S. Cho, J. H. Song, Y. S. Park, J. Y. Lee, K. Y. Hwang, et al. 2011. Identification of the genes involved in 1- deoxynojirimycin synthesis in Bacillus subtilis MORI 3K-85. J. Microbiol. 49: 431-440.   DOI
11 Kwon, H. J., J. Y. Chung, J. Y. Kim, and O. Kwon. 2011. Comparison of 1-deoxynojirimycin and aqueous mulberry leaf extract with emphasis on postprandial hypoglycemic effects: In vivo and in vitro studies. J. Agric. Food Chem. 59: 3014-3019.   DOI   ScienceOn
12 Kharroubi, I., J. Rasschaert, D. L. Eizirik, and M. Cnop. 2003. Expression of adiponectin receptors in pancreatic beta cells. Biochem. Biophys. Res. Commun. 312: 1118-1122.   DOI   ScienceOn
13 Kojima, Y., T. Kimura, K. Nakagawa, A. Asai, K. Hasumi, S. Oikawa, and T. Miyazawa. 2010. Effects of mulberry leaf extract rich in 1-deoxynojirimycin on blood lipid profiles in humans. J. Clin. Biochem. Nutr. 47: 155-161.   DOI   ScienceOn
14 Miyazaki, T., J. D. Bub, M. Uzuki, and Y. Iwamoto. 2005. Adiponectin activates c-Jun NH2-terminal kinase and inhibits signal transducer and activator of transcription 3. Biochem. Biophys. Res. Commun. 333: 79-87.   DOI   ScienceOn
15 Kong, W. H., S. H. Oh, Y. R. Ahn, K. W. Kim, J. H. Kim, and S. W. Seo. 2008. Antiobesity effects and improvement of insulin sensitivity by 1-deoxynojirimycin in animal models. J. Agric. Food Chem. 56: 2613-2619.   DOI   ScienceOn
16 Luo, Z., A. K. Saha, X. Xiang, and N. B. Ruderman. 2005. AMPK, the metabolic syndrome and cancer. Trends Pharmacol. Sci. 26: 69-76.   DOI   ScienceOn
17 Mantzoros, C. S., T. Li, J. E. Manson, J. B. Meigs, and F. B. Hu. 2005. Circulating adiponectin levels are associated with better glycemic control, more favorable lipid profile, and reduced inflammation in women with type 2 diabetes. J. Clin. Endocrinol. Metab. 90: 4542-4548.   DOI
18 Spiegelman, B. M. and J. S. Flier. 2001. Obesity and the regulation of energy balance. Cell 104: 531-543.   DOI   ScienceOn
19 Mu, J., J. T. Jr. Brozinick, O. Valladares, M. Bucan, and M. J. Birnbaum. 2001. A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle. Mol. Cell 7: 1085-1094.   DOI   ScienceOn
20 Muniyappa, R., M. Iantorno, and M. J. Quon. 2008. An integrated view of insulin resistance and endothelial dysfunction. Endocrinol. Metab. Clin. North Am. 37: 685-711.   DOI   ScienceOn
21 Naowaboot, J., P. Pannangpetch, V. Kukongviriyapan, A. Prawan, U. Kukongviriyapan, and A. Itharat. 2012. Mulberry leaf extract stimulates glucose uptake and GLUT4 translocation in rat adipocytes. Am. J. Chin. Med. 40: 163-175.   DOI   ScienceOn
22 Sugimoto, M., H. Arai, Y. Tamura, T. Murayama, P. Khaengkhan, T. Nishio, et al. 2009. Mulberry leaf ameliorates the expression profile of adipocytokines by inhibiting oxidative stress in white adipose tissue in db/db mice. Atherosclerosis 204: 388-394.
23 van Eijk, M., J. Aten, N. Bijl, R. Ottenhoff, C. P. van Roomen, P. F. Dubbelhuis, et al. 2009. Reducing glycosphingolipid content in adipose tissue of obese mice restores insulin sensitivity, adipogenesis and reduces inflammation. PLoS One 4: e4723.   DOI   ScienceOn
24 Tsuchida, A., T. Yamauchi, Y. Ito, Y. Hada, T. Maki, S. Takekawa, et al. 2004. Insulin/Foxo1 pathway regulates expression levels of adiponectin receptors and adiponectin sensitivity. J. Biol. Chem. 279: 30817-30822.   DOI   ScienceOn
25 Tsuduki, T., Y. Nakamura, T. Honma, K. Nakagawa, T. Kimura, I. Ikeda, and T. Miyazawa. 2009. Intake of 1-deoxynojirimycin suppresses lipid accumulation through activation of the betaoxidation system in rat liver. J. Agric. Food Chem. 57: 11024-11029.   DOI   ScienceOn
26 Yamauchi, T., J. Kamon, H. Waki, Y. Terauchi, N. Kubota, K. Hara, et al. 2001. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med. 7: 941-946.   DOI   ScienceOn
27 Wu, X., H. Motoshima, K. Mahadev, T. J. Stalker, R. Scalia, and B. J. Goldstein. 2003. Involvement of AMP-activated protein kinase in glucose uptake stimulated by the globular domain of adiponectin in primary rat adipocytes. Diabetes 52: 1355-1363.   DOI   ScienceOn
28 Yagi, M., T. Kouno, Y. Aoyagi, and H. Murai. 1976. The structure of Moraoline, a piperidine alkaloid from Morus species. Nippon Nougei Kagaku Kaishi 50: 571-572.   DOI
29 Yamauchi, T., J. Kamon, Y. Minokoshi, Y. Ito, H. Waki, S. Uchida, et al. 2002. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med. 8: 1288-1295.   DOI   ScienceOn
30 Yin, J., Z. Gao, D. Liu, Z. Liu, and J. Ye. 2008. Berberine improves glucose metabolism through induction of glycolysis. Am. J. Physiol. Endocrinol. Metab. 294: E148-E156.
31 Zheng, D., P. S. MacLean, S. C. Pohnert, J. B. Knight, A. L. Olson, W. W. Winder, and G. L. Dohm. 2001. Regulation of muscle GLUT-4 transcription by AMP-activated protein kinase. J. Appl. Physiol. 91: 1073-1083.
32 Ziemke, F. and C. S. Mantzoros. 2010. Adiponectin in insulin resistance: Lessons from translational research. Am. J. Clin. Nutr. 91: 258S-261S.   DOI   ScienceOn