Mechanism of Relaxation of Rat Aorta by Scopoletin; an Active Constituent of Artemisia Capillaris

  • Kwon Eui Kwang (Professional Graduate School of Oriental Medicine, Wonkwang University) ;
  • Jin Sang Sik (Professional Graduate School of Oriental Medicine, Wonkwang University) ;
  • oChoi Min H (Professional Graduate School of Oriental Medicine, Wonkwang University) ;
  • Hwang Kyung Taek (Professional Graduate School of Oriental Medicine, Wonkwang University) ;
  • Shim Jin Chan (Professional Graduate School of Oriental Medicine, Wonkwang University) ;
  • Hwang Il Taek (Professional Graduate School of Oriental Medicine, Wonkwang University) ;
  • Han Jong Hyun (Professional Graduate School of Oriental Medicine, Wonkwang University)
  • Published : 2002.04.01

Abstract

In the present work, we examined the mechanism of vasorelaxant effect of scopoletin, an active constituent of Artemisia capillaris on rat thoracic descending aortic rings. Scopoletin induced a concentration-dependent relaxation in rat thoracic descending aortic rings pre-contracted with phenylephrine (EC/sub 50/ = 238.94±37.4 μM), while it was less effective in rat thoracic descending aortic rings precontracted with high potassium solution (KCI 30 mM). Vasorelaxation by scopoletin was significantly inhibited after endothelial removal, but recovered at high concentration. Pretreatment of rat thoracic descending aortic rings with N/sup G/-nitro-L-arginine (100 μM), a nitric oxide synthase inhibitor, and atropine (1 μM), a muscarinic receptor antagonist, significantly inhibited scopoletin-induced relaxation of rat thoracic descending aortic rings. Neither indomethacin (3 μM), an inhibitor of cydooxygenase, nor propranolol (1 μM), a β -adrenoceptor antagonist, modified the effect of scopoletin. The combination of N/sup G/ -nitro-L-arginine (100 μ M) and miconazole (10 μ M), an inhibitor of cytochrome P 450, did not modify the effect of scopoletin, when compared with pretreatment with N/sup G/-nitro-L-arginine(100 μM) alone. Vasorelaxant effect of scopoletin was inverted by pretreatment with diltiazem (10 μM), a Ca/sup 2+/-channel blocker, at low concentration, while restored at high concentration. Apamin (K/sub ca/-channel blocker, 1 μM), 4-aminopyridine (4-AP, K/sub v/-channel blocker, 1 mM), and tetrodotoxin (TTX, Na/sup +/-channel blocker 1 μM) potentiated the vasorelaxant effect of scopoledn, but glibendamide (K/sub ATP/-channel blocker, 10 μM), tetraetylammonium(TEA, non-selective K-channel blocker, 10 mM) did not affect the relaxation of scopoletin. Free radical scavengers (TEMPO, catalase, mannitol) did not modify vascular tone. These results suggest that nitric oxide, Ca/sup 2+/ -channels play a role in endothelium-dependent relaxations to scopoletin in rat aortas, that apamin, 4-AP, TTX but not glibenclamide, TEA potentiated relaxation to scopoletin mediated by these channels, and that free radicals do not concern to the vasorelaxant effect of scopoletin.

Keywords

References

  1. Colourful Clinical Materia Medica Shin, M.K.
  2. Native Herb (Crude Drug) Encyclopedia [a book of Plants] Chung, B.S.;Shin, M.K.
  3. Chem. Pharm. Bull. v.36 no.2 Studies on choleretic constituent in Artemisia capillaris THUNB. Okuno, I.;Uchida, K.;Nakamura, M.;Sakurawi, K. https://doi.org/10.1016/0006-2952(87)90733-7
  4. Planta Med. v.49 Mechanism of the hypotensive effect of scopoletin isolated from the fruit of Tetrapleura tetraptera. Ojewole, J. A. O.;Adesina, S. K. https://doi.org/10.1055/s-2007-969809
  5. Planta Med. v.49 Cardiovascular and neuromuscular action of scopoletin from the fruit of Tetrapleura tetraptera. Ojewole, J. A. O.;Adesina, S. K. https://doi.org/10.1055/s-2007-969824
  6. Eur. J. Biochem. v.233 Transient and steady-state kinetics of the oxidation of scopoletin by horseradish peroxidase compounds Ⅰ, Ⅱ and Ⅲ in the presence of NADH. Marquez, L. A.;Dunford, H. B. https://doi.org/10.1111/j.1432-1033.1995.364_1.x
  7. Arch. Biocem. Biophys. v.359 no.1 Ca$^{2+}$-stimulated mitochondrial reactive oxygen species generation and permeability transition are inhibited by dibucaine or Mg$^{2+}$. Kowaltowski, A. J.;Naia-da-silva, E. S.;Castilho, R. F.;Vercesi, A. E. https://doi.org/10.1006/abbi.1998.0870
  8. Anal. Biochem. v.253 A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: Applications in detecting the activity of phagocyte NADPH oxidase and other oxidases. Zhou, M.;Diwu, Z.;Voloshina, N. V.;Haugland, R. P. https://doi.org/10.1006/abio.1997.2391
  9. Eur. J. Biochem. v.148 NADPH oxidation catalyzed by the peroxidase/$H_{2}O_{2}$ system: Guaiacol-mediated and scopoletin-mediated oxidation of NADPH to NADP+. Michot, J. L.;Virion, A.;Deme, D.;De Prailaune, S.;Pommier, J. https://doi.org/10.1111/j.1432-1033.1985.tb08859.x
  10. J. Moll. cell. cardiol. v.31 Primary endothelial dysfunction: Atherosclerosis. Shimokawa, H. https://doi.org/10.1006/jmcc.1998.0839
  11. J. Vasc Res. v.34 Calcium-dependent and -independent activation of the endothelial NO synthase. Fleming, I.;Bauersachs, J.;Busse, R. https://doi.org/10.1159/000159220
  12. J. Moll cell cardiol. v.31 NO: the primary EDRF. Fleming, I.;Busse, R. https://doi.org/10.1006/jmcc.1998.0840
  13. J. Moll cell cardiol. v.31 The alternative: EDHF F l tou, M.;Vanhoutte, P. M. https://doi.org/10.1006/jmcc.1998.0840
  14. Am. J. Physiol. Heart circ. Physiol. v.278 In eNOS knockout mice skeletal muscle arteriolar dilation to acetylchorine is mediated by EDHF. Huang, A.;Sun, D.;Smith, C. J.;Counetta, J. A.;Shesely, E. G.;Koller, A.;Kaley, G.
  15. Am. J. Physiol. v.273 Components of acetylcholine-induced dilation in isolated rat arterioles. Bakker, E. N. T. P.;Sipkema, P.
  16. FASEB J. v.3 no.1 Endothelium-derived nitric oxide: action and properties. Ignarro, L. J.
  17. Pharmacology. Rang, H. P.;Dale, M. M.;Ritter, J. M.
  18. Eur. J. Pharm. v.274 Endothelium -dependent relaxation resistant to NG-nitro-L-arginine in rat aorta. Hadake, K.;Wakabayashi, I.;Hishda, S. https://doi.org/10.1016/0014-2999(94)00704-B
  19. Cicr Res v.83 A major role for prostacyclin in nitric oxide-induced occular vasorelaxation in the piglet. Hardy, P.;Abran, D.;Hou, X.;Lahaie, I.;Peri, K. G.;Asselin, P.;Varma, D. R.;Chemtob, S. https://doi.org/10.1161/01.RES.83.7.721
  20. News in the Physiological science. v.15 Endothelium-derived hyperpolarizing factor - fact or fiction? Hecker, M.
  21. Planta Med. v.65 Scopoletin: an inducible nitric oxide synthesis inhibitory active constituent from Artemisia feddei. Kang, T. H.;Pae, H. O.;Jeong, S. J.;Yoo, J. C.;Choi, B. M.;Jun, C. D.;Chung, H. T.; Miyamotm, R.;Higuchi, R.;Kim, Y. C.
  22. Planta Med. v.65 In vitro inducible nitric oxide synthesis inhibitory active constituents from Fraxinus rhynchophylla. Kang, T. H.;Pae, H. O.;Ko, Y. S.;Yoo, J. C.;Choi, B. M.;Jun, C. D.;Chung, H. T.; Inagaki, M.;Higuchi, R.;Kim, Y. C. https://doi.org/10.1055/s-2006-960840
  23. Japan. J. Pharmacol. v.31 Choleretic effect of Artemisia capllaris extract in rats. Okuno, I.;uchida, K.;Kadowaki, M.;Akahori, A. https://doi.org/10.1254/jjp.31.835
  24. Biol. Pharmacol. Bull. v.17 no.1 Production of holeretic substances in the capitulum, leaf and stem of Artemisia capillaris during the plant growth cycle. Ikenaga, T.;Hizaco, M.;Tajima, M.;Nakayama, K. https://doi.org/10.1248/bpb.17.150
  25. Arch. Pharmacol. Res. v.21 no.6 Hepatoprotective activity of scopoletin, a constituent of Solarum lyratum. Kang, S. Y.;Sung, S.H.;Park, J. H.;Kim, Y. C. https://doi.org/10.1007/BF02976764
  26. Planta Med. no.1 Antihepatotoxic principles of Artemisia capillaris buds. Kiso, Y.;Ogasawara, S.;Hirota, K.;Watanabe, N.;Oshima, Y.;Konno, C.;Hikino, H.
  27. Free radical biology & Medicine. v.28 no.11 Hydrogen peroxide release from human eosinophils on fibronectin: scopoletin enhances eosinophil activation. Raible, D. G.;Mohanty, J. G.;Jaffe, J. S.;Stella, H. J.;Sprenkle, B. E.;Glaum, M. C.; Schulmann, E. S. https://doi.org/10.1016/S0891-5849(00)00279-3
  28. Anesthesiology. v.84 Etomidate and thiopental inhibit the release of endothelium-derived hyperpolarizing factor in the human renal artery. Kessler, P.;Lischke, V.;Hecker, M. https://doi.org/10.1097/00000542-199606000-00025
  29. FEBS lett. v.265 Calcium-dependent nitric oxide synthesis in endothelial cytosol is mediated by calmodulin. Busse, R.;Műlsch, A. https://doi.org/10.1016/0014-5793(90)80902-U
  30. Eur. J. Pharmacol. v.366 Agonist -dependent difference in the relationship between cytosolic Ca$^{2+}$ level and release of vascular relaxing factor in the endothelium of rabbit aortic valve. Amano, K.;Hori, M.;Ozaki, H.;Karaki, H. https://doi.org/10.1016/S0014-2999(98)00913-3
  31. J. Clin. Invest. v.88 no.5 Flow activates an endothelial potassium channel to release an endogenous nitrovasodilator. Coke, J. P.;Rossitch, E. Jr.;Andon, N. A.;Dazu, V. J. https://doi.org/10.1172/JCI115481
  32. J. Moll cell cardiol. v.28 Hydroxyl radical - a mediator of acetylcholine- induced vascular relaxtion. Prasad, K.;Bharadwaj, L. A. https://doi.org/10.1006/jmcc.1996.0196
  33. Eur. J. Pharmacol. v.392 Time course of changes in endothelium -dependent and -independent relaxation of chronically diabetic aorta: role of reactive oxygen species. Karasu, C. https://doi.org/10.1016/S0014-2999(00)00140-0
  34. J. pathol. v.190 no.3 U. Nitric oxide in the pathogenesis of vascular disease. Li, H. Forstermann https://doi.org/10.1002/(SICI)1096-9896(200002)190:3<244::AID-PATH575>3.0.CO;2-8