• Title/Summary/Keyword: IGZO thin film

Search Result 191, Processing Time 0.047 seconds

Characteristics of a-IGZO TFTs with Oxygen Ratio

  • Lee, Cho;Park, Ji-Yong;Mun, Je-Yong;Kim, Bo-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.341.1-341.1
    • /
    • 2014
  • In the advanced material for the next generation display device, transparent amorphous oxide semiconductors (TAOS) are promising materials as a channel layer in thin film transistor (TFT). The TAOS have many advantages for large-area application compared with hydrogenated amorphous silicon TFT (a-Si:H) and organic semiconductor TFT. For the reasonable characteristics of TAOS, The a-IGZO has the excellent performances such as low temperature fabrication (R.T~), high mobility, visible region transparent, and reasonable on-off ratio. In this study, we investigated how the electric characteristics and physical properties are changed as various oxygen ratio when magnetron sputtering. we analysis a-IGZO film by AFM, EDS and I-V measurement. decreasing the oxygen ratio, the threshold voltage is shifted negatively and mobility is increasing. Through this correlation, we confirm the effect of oxygen ratio. We fabricated the bottom-gate a-IGZO TFTs. The gate insulator, SiO2 film was grown on heavily doped silicon wafer by thermal oxidation method. a-IGZO channel layer was deposited by RF magnetron sputtering. and the annealing condition is $350^{\circ}C$. Electrode were patterned Al deposition through a shadow mask(160/1000 um).

  • PDF

Hybrid complementary circuits based on organic/inorganic flexible thin film transistors with PVP/Al2O3 gate dielectrics

  • Kim, D.I.;Seol, Y.G.;Lee, N.E.;Woo, C.H.;Ahn, C.H.;Ch, H.K.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.479-479
    • /
    • 2011
  • Flexible inverters based on complementary thin-film transistor (CTFTs) are important because they have low power consumption and other advantages over single type TFT inverters. In addition, integrated CTFTs in flexible electronic circuits on low-cost, large area and mechanically flexible substrates have potentials in various applications such as radio-frequency identification tags (RFIDs), sensors, and backplanes for flexible displays. In this work, we introduce flexible complementary inverters using pentacene and amorphous indium gallium zinc oxide (IGZO) for the p-channel and n-channel, respectively. The CTFTs were fabricated on polyimide (PI) substrate. Firstly, a thin poly-4-vinyl phenol (PVP) layer was spin coated on PI substrate to make a smooth surface with rms surface roughness of 0.3 nm, which was required to grow high quality IGZO layers. Then, Ni gate electrode was deposited on the PVP layer by e-beam evaporator. 400-nm-thick PVP and 20-nm-thick ALD Al2O3 dielectric was deposited in sequence as a double gate dielectric layer for high flexibility and low leakage current. Then, IGZO and pentacene semiconductor layers were deposited by rf sputter and thermal evaporator, respectively, using shadow masks. Finally, Al and Au source/drain electrodes of 70 nm were respectively deposited on each semiconductor layer using shadow masks by thermal evaporator. Basic electrical characteristics of individual transistors and the whole CTFTs were measured by a semiconductor parameter analyzer (HP4145B, Agilent Technologies) at room temperature in the dark. Performance of those devices then was measured under static and dynamic mechanical deformation. Effects of cyclic bending were also examined. The voltage transfer characteristics (Vout- Vin) and voltage gain (-dVout/dVin) of flexible inverter circuit were analyzed and the effects of mechanical bending will be discussed in detail.

  • PDF

Flexibility Improvement of InGaZnO Thin Film Transistors Using Organic/inorganic Hybrid Gate Dielectrics

  • Hwang, B.U.;Kim, D.I.;Jeon, H.S.;Lee, H.J.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.341-341
    • /
    • 2012
  • Recently, oxide semi-conductor materials have been investigated as promising candidates replacing a-Si:H and poly-Si semiconductor because they have some advantages of a room-temperature process, low-cost, high performance and various applications in flexible and transparent electronics. Particularly, amorphous indium-gallium-zinc-oxide (a-IGZO) is an interesting semiconductor material for use in flexible thin film transistor (TFT) fabrication due to the high carrier mobility and low deposition temperatures. In this work, we demonstrated improvement of flexibility in IGZO TFTs, which were fabricated on polyimide (PI) substrate. At first, a thin poly-4vinyl phenol (PVP) layer was spin coated on PI substrate for making a smooth surface up to 0.3 nm, which was required to form high quality active layer. Then, Ni gate electrode of 100 nm was deposited on the bare PVP layer by e-beam evaporator using a shadow mask. The PVP and $Al_2O_3$ layers with different thicknesses were used for organic/inorganic multi gate dielectric, which were formed by spin coater and atomic layer deposition (ALD), respectively, at $200^{\circ}C$. 70 nm IGZO semiconductor layer and 70 nm Al source/drain electrodes were respectively deposited by RF magnetron sputter and thermal evaporator using shadow masks. Then, IGZO layer was annealed on a hotplate at $200^{\circ}C$ for 1 hour. Standard electrical characteristics of transistors were measured by a semiconductor parameter analyzer at room temperature in the dark and performance of devices then was also evaluated under static and dynamic mechanical deformation. The IGZO TFTs incorporating hybrid gate dielectrics showed a high flexibility compared to the device with single structural gate dielectrics. The effects of mechanical deformation on the TFT characteristics will be discussed in detail.

  • PDF

Effect of gate electrode material on electrical characteristics of a-IGZO thin-film transistors (게이트 전극 물질이 a-IGZO 박막트랜지스터의 전기적 특성에 미치는 영향)

  • Oh, Hyungon;Cho, Kyoungah;Kim, Sangsig
    • Journal of IKEEE
    • /
    • v.21 no.2
    • /
    • pp.170-173
    • /
    • 2017
  • In this study, we fabricate amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs) with three different gate electrode materials of Al, Mo and Pt on plastic substrates and investigate their electrical characteristics. Compared to an a-IGZO TFT with Al gate electrode, the threshold voltage of an a-IGZO TFT with a Pt electrode decreases from -4.2 to -0.3 V. and the filed-effect mobility is improved from 15.8 to $22.1cm^2/V{\cdot}s$. The threshold voltage shift of the TFT is affected by the difference between the work function of the gate electrode and the Fermi energy of the channel layer. Moreover, the Pt gate electrode is considered to be the suitable material in terms of the electrical characteristics of the TFT. In addition, an description on an a-IGZO TFT with a Mo electrode will be given here.

Effect of RF Power on the Structural, Optical and Electrical Properties of Amorphous InGaZnO Thin Films Prepared by RF Magnetron Sputtering (RF 마그네트론 스퍼터링으로 증착한 비정질 InGaZnO 박막의 구조적, 광학적, 전기적 특성에 미치는 RF 파워의 영향)

  • Shin, Ji-Hoon;Cho, Young-Je;Choi, Duck-Kyun
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.1
    • /
    • pp.38-43
    • /
    • 2009
  • To investigate the effect of RF power on the structural, optical and electrical properties of amorphous InGaZnO (a-IGZO), its thin films and TFTs were prepared by RF magnetron sputtering method with different RF power conditions of 40, 80 and 120 W at room temperature. In this study, as RF power during the deposition process increases, the RMS roughness of a-IGZO films increased from 0.26 nm to 1.09 nm, while the optical band-gap decreased from 3.28 eV to 3.04 eV. In the case of the electrical characteristics of a-IGZO TFTs, the saturation mobility increased from $7.3cm^2/Vs$ to $17.0cm^2/Vs$, but the threshold voltage decreased from 5.9 V to 3.9 V with increasing RF power. It is regarded that the increment of RF power increases the carrier concentration of the a-IGZO semiconductor layer due to the higher generation of oxygen vacancies.

Improved Electrical Properties of Indium Gallium Zinc Oxide Thin-Film Transistors by AZO/Ag/AZO Multilayer Electrode

  • No, Young-Soo;Yang, Jeong-Do;Park, Dong-Hee;Kim, Tae-Whan;Choi, Ji-Won;Choi, Won-Kook
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.105-110
    • /
    • 2013
  • We fabricated an a-IGZO thin film transistor (TFT) with AZO/Ag/AZO transparent multilayer source/drain contacts by rf magnetron sputtering. a-IGZO TFT with AZO/Ag/AZO multilayer S/D electrodes (W/L = 400/50 ${\mu}m$) showed a subs-threshold swing of 3.78 V/dec, a minimum off-current of $10^{-12}$ A, a threshold voltage of 0.41 V, a field effect mobility of $10.86cm^2/Vs$, and an on/off ratio of $9{\times}10^9$. From the ultraviolet photoemission spectroscopy, it was revealed that the enhanced electrical performance resulted from the lowering of the Schottky barrier between a-IGZO and Ag due to the insertion of an AZO layer and thus the AZO/Ag/AZO multilayer would be very appropriate for a promising S/D contact material for the fabrication of high performance TFTs.

Effect of RF Power on the Stability of a-IGZO Thin Film Transistors

  • Choe, Hyeok-U;Gang, Geum-Sik;No, Yong-Han
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.354-355
    • /
    • 2013
  • 최근 디스플레이 분야에서 amorphous InGaZnO (a-IGZO) thin film transistors (TFTs)는 a-Si:H에 비해 비정질 상태에서도 비교적 높은 이동도를 가지고 다결정 Si 반도체에 비해 저온공정이 가능하고 대면적화가 용이한 장점 때문에 주목받고 있다. 또한 넓은 밴드갭을 가지기 때문에 가시광선 영역에서 투명하여 투명소자에도 응용이 가능하다. 본 연구에서는 RF magnetron sputtering법을 이용하여 RF power의 변화에 따라 IGZO 박막의 positive bias stress (PBS)에 대한 안정성을 조사하였다. 소결된 타겟으로는 In:Ga:ZnO를 각각 2:2:1 mol%의 조성비로 소결하여 이용하였고, 공정 조건은 초기 압력 Torr, 증착 압력 Torr, Ar:O2=18:12 sccm로 고정하였다. 공정 변수로는 130 W, 150 W, 170 W, 200 W로 변화를 주어 실험을 진행하였다. PBS 측정은 gate bias를 10 V로 고정하여 stress 시간을 각각 0, 30, 100, 300, 1,000, 3,000, 7,000초를 적용하였다. 측정 결과 RF power가 증가할수록 문턱전압의 변화량이 증가하는 것을 보였다. 130 W의 경우 4.47 V의 변화량을 보였지만 200 W의 경우는 10.01 V로 증가되어 나타났다. 따라서 RF power을 낮추어 만들어진 소자의 경우 RF power를 높여 만들어진 소자에 비해 PBS에 대한 안정성이 더 높은 결과를 확인하였다.

  • PDF

A Transparent Logic Circuit for RFID Tag in a-IGZO TFT Technology

  • Yang, Byung-Do;Oh, Jae-Mun;Kang, Hyeong-Ju;Park, Sang-Hee;Hwang, Chi-Sun;Ryu, Min Ki;Pi, Jae-Eun
    • ETRI Journal
    • /
    • v.35 no.4
    • /
    • pp.610-616
    • /
    • 2013
  • This paper proposes a transparent logic circuit for radio frequency identification (RFID) tags in amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) technology. The RFID logic circuit generates 16-bit code programmed in read-only memory. All circuits are implemented in a pseudo-CMOS logic style using transparent a-IGZO TFTs. The transmittance degradation due to the transparent RFID logic chip is 2.5% to 8% in a 300-nm to 800-nm wavelength. The RFID logic chip generates Manchester-encoded 16-bit data with a 3.2-kHz clock frequency and consumes 170 ${\mu}W$ at $V_{DD}=6$ V. It employs 222 transistors and occupies a chip area of 5.85 $mm^2$.

Crystallization of IGZO thin film with spontaneously formed superlattice structure induced by Zno buffer layer (Zno 버퍼층을 이용한 자발적 초격자구조를 갖는 IGZO 박막의 결정화)

  • Seo, Dong-Kyu;Kong, Bo-Hyun;Cho, Hyoung-Koun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.4-4
    • /
    • 2010
  • Single-crystalline IGZO (Indium-Gallium-Zinc oxide) was fabricated on c-sapphire substrate. Single crystal ZnO was used as a buffer layer, and post-annealing was treated in $900^{\circ}C$ for crystallization of IGZO. Crystallized IGZO formed superlattice structure spontaneously induced to c-axis direction by ZnO butTer layer, the composition of IGZO was varied by amount of ZnO. Crystallinity and composition of IGZO was analyzed by X-ray Diffraction and Transmission Electron Microscopy.

  • PDF

Comparison between the Electrical Properties and Structures after Atmosphere Annealing and Vacuum Annealing of IGZO Thin Films (IGZO 박막 증착 후 진공과 대기 중에서 열처리한 후 결합구조와 전기적인 특성의 비교)

  • Ann, Young Deuk;Yeon, Jae Ho;Oh, Teresa
    • Industry Promotion Research
    • /
    • v.1 no.1
    • /
    • pp.7-11
    • /
    • 2016
  • It was the electrical properties of IGZO prepared by the annealing in a vaccum and an atmosphere conditions to research the current-voltage characteristics. The IGZO film annealed in a vaccum became an amorphous structure but films annealed in an atmosphere condition had a crystal structure. Because of the content of oxygen vacancies during the annealing processes was changed, and the annealing in an atmosphere condition increased the oxygen vacancy in IGZO. Oxygen vacancy in IGZO increased the current and then it was observed the Ohmic contact at IGZO annealed in an atmosphere conditions. However, the IGZO prepared in a vaccum showed the Schottky contact.