• Title/Summary/Keyword: IGZO film

Search Result 197, Processing Time 0.032 seconds

Structural and Electrical Characteristics of IGZO thin Films deposited at Different Substrate Temperature (기판온도에 따른 IGZO 박막의 구조적 및 전기적 특성)

  • Lee, Mingyu;Lee, Kyu Mann
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.1
    • /
    • pp.1-5
    • /
    • 2016
  • In this study, we have investigated the effect of the substrate temperature on the characteristics of IGZO thin films for the TCO(transparent conducting oxide). For this purpose, IGZO thin films were deposited by RF magnetron sputtering at various substrate temperature (room temperature ${\sim}400^{\circ}C$). IGZO thin films deposited at room temperature show amorphous structure, whereas IGZO thin films deposited at $250^{\circ}C$ or more show crystalline structure having an (222) preferential orientation. The electrical resistivity of IGZO film increased with increasing temperature. The change of electrical resistivity with increasing temperature was mainly interpreted in terms of the charge carrier concentration rather than the charge carrier mobility. The electrical resistivity of the amorphous-IGZO films deposited at R.T. was lower than that of the crystalline-IGZO thin films deposited at $300^{\circ}C$. The transmittance of the IGZO films deposited at $300^{\circ}C$ was decreased deposited with hydrogen gas.

Improved Bias Stress Stability of Solution Processed ITZO/IGZO Dual Active Layer Thin Film Transistor

  • Kim, Jongmin;Cho, Byoungdeog
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.215.2-215.2
    • /
    • 2015
  • We fabricated dual active layer (DAL) thin film transistors (TFTs) with indium tin zinc oxide (ITZO) and indium gallium zinc oxide (IGZO) thin film layers using solution process. The ITZO and IGZO layer were used as the front and back channel, respectively. In order to investigate the bias stress stability of ITZO SAL (single active layer) and ITZO/IGZO DAL TFT, a gate bias stress of 10 V was applied for 1500 s under the dark condition. The SAL TFT composed of ITZO layer shows a poor positive bias stability of ${\delta}VTH$ of 13.7 V, whereas ${\delta}VTH$ of ITZO/IGZO DAL TFT was very small as 2.6 V. In order to find out the evidence of improved bias stress stability, we calculated the total trap density NT near the channel/gate insulator interface. The calculated NT of DAL and SAL TFT were $4.59{\times}10^{11}$ and $2.03{\times}10^{11}cm^{-2}$, respectively. The reason for improved bias stress stability is due to the reduction of defect sites such as pin-hole and pores in the active layer.

  • PDF

Diffusion Behaviors and Electrical Properties in the In-Ga-Zn-O Thin Film Deposited by Radio-frequency Reactive Magnetron Sputtering

  • Lee, Seok Ryeol;Choi, Jae Ha;Lee, Ho Seong
    • Journal of Surface Science and Engineering
    • /
    • v.48 no.6
    • /
    • pp.322-328
    • /
    • 2015
  • We investigated the diffusion behaviors, electrical properties, microstructures, and composition of In-Ga-Zn-O (IGZO) oxide thin films deposited by radio frequency reactive magnetron sputtering with increasing annealing temperatures. The samples were deposited at room temperature and then annealed at 300, 400, 500, 600 and $700^{\circ}C$ in air ambient for 2 h. According to the results of time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy, no diffusion of In, Ga, and Zn components were observed at 300, 400, 500, $600^{\circ}C$, but there was a diffusion at $700^{\circ}C$. However, for the sample annealed at $700^{\circ}C$, considerable diffusion occurred. Especially, the concentration of In and Ga components were similar at the IGZO thin film but were decreased near the interface between the IGZO and glass substrate, while the concentration of Zn was decreased at the IGZO thin film and some Zn were partially diffused into the glass substrate. The high-resolution transmission electron microscopy results showed that a phase change at the interface between IGZO film and glass substrate began to occur at $500^{\circ}C$ and an unidentified crystalline phase was observed at the interface between IGZO film and glass substrate due to a rapid change in composition of In, Ga and Zn at $700^{\circ}C$. The best values of electron mobility of $15.5cm^2/V{\cdot}s$ and resistivity of $0.21{\Omega}cm$ were obtained from the sample annealed at $600^{\circ}C$.

The optical and electrical properties of IGZO thin film fabricated by RF magnetron sputtering according to RF power (RF magnetron sputtering법으로 형성된 IGZO박막의 RF power에 따른 광학적 및 전기적 특성)

  • Zhang, Ya Jun;Kim, Hong Bae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.1
    • /
    • pp.41-45
    • /
    • 2013
  • IGZO transparent conductive thin films were widely used as transparent electrode of optoelectronic devices. We have studied the optical and electrical properties of IGZO thin films. The IGZO thin films were deposited on the corning 1737 glass by RF magnetron sputtering method. The RF power in sputtering process was varied as 25, 50, 75and 100 W, respectively. All of the thin films transmittance in the visible range was above 85%. XRD analysis showed that amorphous structure of the thin films without any peak. The thin films were electrically characterized by high mobility above $13.4cm^2/V{\cdot}s$, $7.0{\times}10^{19}cm^{-3}$ high carrier concentration and $6{\times}10^{-3}{\Omega}-cm$ low resistivity. By the studies we found that IGZO transparent thin film can be used as transparent electrodes in electronic devices.

Effects of Rapid Thermal Annealing on the Conduction of a-IGZO Films (급속 열처리가 a-IGZO 박막의 전도에 미치는 영향)

  • Kim, Do-Hoon;Cho, Won-Ju
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.1
    • /
    • pp.11-16
    • /
    • 2016
  • The conduction behavior and electron concentration change in a-IGZO thin-films according to the RTA (rapid thermal annealing) were studied. The electrical characteristics of TFTs (thin-film-transistors) annealed by different temperatures were measured. The sheet resistance, electron concentration, and oxygen vacancy of a-IGZO film were measured by the four-point-probe-measurement, hall-effect-measurement, and XPS analysis. The RTA process increased the driving current of IGZO TFTs but the VTH shifted to the negative direction at the same time. When the RTA temperature is higher than $250^{\circ}C$, the leakage current at off-state increased significantly. This is attributed to the increase of oxygen vacancy resulting in the increase of electron concentration. We demonstrate that the RTA is a promising process to adjust the VTH of TFT because the RTA process can easily modify the electron concentration and control the conductivity of IGZO film with short process time.

Effect of Oxygen Binding Energy on the Stability of Indium-Gallium-Zinc-Oxide Thin-Film Transistors

  • Cheong, Woo-Seok;Park, Jonghyurk;Shin, Jae-Heon
    • ETRI Journal
    • /
    • v.34 no.6
    • /
    • pp.966-969
    • /
    • 2012
  • From a practical viewpoint, the topic of electrical stability in oxide thin-film transistors (TFTs) has attracted strong interest from researchers. Positive bias stress and constant current stress tests on indium-gallium-zinc-oxide (IGZO)-TFTs have revealed that an IGZO-TFT with a larger Ga portion has stronger stability, which is closely related with the strong binding of O atoms, as determined from an X-ray photoelectron spectroscopy analysis.

Enhanced electrical property of Y doped IGZO thin film for TFT channel layer (TFT 채널 층 IGZO박막의 Yttrium 도핑에 따른 전기적 특성 개선)

  • Kim, Do-Yeong;Song, Pung-Geun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.05a
    • /
    • pp.92-93
    • /
    • 2015
  • 빠른 응답속도를 요구하는 고품질 대면적 디스플레이의 박막형 트랜지스터 적용에 있어서 비정질 IGZO 박막에 대한 많은 연구가 진행되어왔으나, 불순물 도입에 의한 5성분계 IGZO 박막의 전기적 특성 향상에 대한 연구는 거의 보고 되지 않고 있다. 따라서 이번 연구에서는 magnetron co-sputtering 법으로 50 nm 두께를 가지는 yttrium이 도핑된 5성분계 Y-IGZO박막과 Y-IGZO/IGZO 하이브리드막을 제조하여 그 전기적, 광학적 특성 및 표면 조도를 관찰 하였다.

  • PDF

Enhancing Electrical Properties of Sol-Gel Processed IGZO Thin-Film Transistors through Nitrogen Atmosphere Electron Beam Irradiation (질소분위기 전자빔 조사에 의한 졸-겔 IGZO 박막 트랜지스터의 전기적 특성 향상)

  • Jeeho Park;Young-Seok Song;Sukang Bae;Tae-Wook Kim
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.3
    • /
    • pp.56-63
    • /
    • 2023
  • In this paper, we studied the effect of electron beam irradiation on sol-gel indium-gallium-zinc oxide (IGZO) thin films under air and nitrogen atmosphere and carried out the electrical characterization of the s ol-gel IGZO thin film transistors (TFTs). To investigate the optical properties, crystalline structure and chemical state of the sol-gel IGZO thin films after electron beam irradiation, UV-Visible spectroscopy, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were carried out. The sol-gel IGZO thin films exhibited over 80% transmittance in the visible range. The XRD analysis confirmed the amorphous nature of the sol-gel IGZO films regardless of electron beam irradiation. When electron beam irradiation was conducted in a nitrogen (N2) atmosphere, we observed an increased proportion of peaks related to M-O bonding contributed to the improved quality of the thin films. Sol-gel IGZO TFTs subjected to electron beam exposure in a nitrogen atmosphere exhibited enhanced electrical characteristics in terms of on/off ratio and electron mobility. In addition, the electrical parameters of the transistor (on/off ratio, threshold voltage, electron mobility, subthreshold swing) remained relatively stable over time, indicating that the electron beam exposure process in a nitrogen atmosphere could enhance the reliability of IGZO-based thin-film transistors in the fabrication of sol-gel processed TFTs.

Structural and Optical Properties of Multilayer Films of IGZO / Ag / IGZO for Low Emissivity Applications (Low-e용 산화물 다층박막 IGZO/Ag/IGZO의 구조적, 광학적 특성 분석)

  • Wang, Hong Rae;Kim, Hong Bae;Lee, Sang Yeol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.4
    • /
    • pp.321-324
    • /
    • 2013
  • In this study, The RF magnetron sputter and evaporator was on glass substrates 30 mm ${\times}$ 30 mm OMO multilayer thin film structure is applied to the low-e. Structural and optical properties, a thin film was produced, the variable was placed into a variable deposition time of the oxide layer. According to the XRD measurement results there is no peak that satisfies the Bragg's law ($2dsin{\theta}=n{\lambda}$) which confirmed that it is an amorphous structure. RMS value of the results of the AFM measurement, has a roughness of less than 2 nm. transmittance measurements results, visible light region an average 80%, IR region 40% showed.

Light Effects of the Amorphous Indium Gallium Zinc Oxide Thin-Film Transistor

  • Lee, Keun-Woo;Shin, Hyun-Soo;Heo, Kon-Yi;Kim, Kyung-Min;Kim, Hyun-Jae
    • Journal of Information Display
    • /
    • v.10 no.4
    • /
    • pp.171-174
    • /
    • 2009
  • The optical and electrical properties of the amorphous indium gallium zinc oxide thin-film transistor ($\alpha$-IGZO TFT) were studied. When the $\alpha$-IGZO TFT was illuminated at a wavelength of 660 nm, the off-state drain current slightly increased, while below 550 nm it increased significantly. The $\alpha$-IGZO TFT was found to be extremely sensitive, with deep-level defects at approximately 2.25 eV near the midgap. After UV light illumination, a slight change occurred on the surface of the $\alpha$-IGZO films, such as in terms of the oxygen 1s spectra, resistivity, and carrier concentrations. It is believed that these results will provide information regarding the photo-induced behaviors in the $\alpha$-IGZO films.