Browse > Article
http://dx.doi.org/10.4313/JKEM.2016.29.1.11

Effects of Rapid Thermal Annealing on the Conduction of a-IGZO Films  

Kim, Do-Hoon (Department of Electronic Materials Engineering, Kwangwoon University)
Cho, Won-Ju (Department of Electronic Materials Engineering, Kwangwoon University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.29, no.1, 2016 , pp. 11-16 More about this Journal
Abstract
The conduction behavior and electron concentration change in a-IGZO thin-films according to the RTA (rapid thermal annealing) were studied. The electrical characteristics of TFTs (thin-film-transistors) annealed by different temperatures were measured. The sheet resistance, electron concentration, and oxygen vacancy of a-IGZO film were measured by the four-point-probe-measurement, hall-effect-measurement, and XPS analysis. The RTA process increased the driving current of IGZO TFTs but the VTH shifted to the negative direction at the same time. When the RTA temperature is higher than $250^{\circ}C$, the leakage current at off-state increased significantly. This is attributed to the increase of oxygen vacancy resulting in the increase of electron concentration. We demonstrate that the RTA is a promising process to adjust the VTH of TFT because the RTA process can easily modify the electron concentration and control the conductivity of IGZO film with short process time.
Keywords
IGZO; RTA; Carrier concentration; Oxygen vacancy; Conductivity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature, 432, 488 (2004). [DOI: http://dx.doi.org/10.1038/nature03090]   DOI
2 P. G. Carey, P. M. Smith, S. D. Theiss, and P. Wickboldt, J. Vac. Sci. Technol. A, 17, 1946 (2000). [DOI: http://dx.doi.org/10.1116/1.581708]   DOI
3 C. D. Dimitrakopoulos and P.R.L. Malenfant, Adv. Mater., 14, 99 (2002). [DOI: http://dx.doi.org/10.1002/1521-4095 (20020116)14:2%3C99::AID-ADMA99%3E3.0.CO;2-9]   DOI
4 S. W. Lee and W. J. Cho, J. Korean Phys. Soc., 60, L1317 (2012). [DOI: http://dx.doi.org/10.3938/jkps.60.1317]   DOI
5 J. M. Larson and J. P. Snyder, IEEE Trans. Electron Dev., 53, 1048 (2006). [DOI: http://dx.doi.org/10.1109/TED.2006.871842]
6 H. C. Wu and C. H. Chien, Appl. Phys. Lett., 102, 062103 (2013). [DOI: http://dx.doi.org/10.1063/1.4789997]   DOI
7 K. W. Jo and W. J. Cho, Appl. Phys. Lett., 105, 213505 (2014). [DOI: http://dx.doi.org/10.1063/1.4902867]   DOI
8 J. S. Kim, M. K. Joo, M. X. Piao, S. E. Ahn, Y. H. Choi, H. K. Jang, and G. T. Kim, J. Appl. Phys., 115, 114503 (2014). [DOI: http://dx.doi.org/10.1063/1.4868630]   DOI
9 T. C. Fung, C. S. Chuang, C. Chen, K. Abe, R. Cottle, M. Townsend, H. Kumomi, and J. Kanicki, J. Appl. Phys., 106, 084511 (2009). [DOI: http://dx.doi.org/10.1063/1.3234400]   DOI
10 B. Y. Su, S. Y. Chu, Y. D. Juang, and S. Y. Liu, J. Alloys and Compounds, 580, 10 (2013). [DOI: http://dx.doi.org/10.1016/j.jallcom.2013.05.077]   DOI
11 J. Yao, N. Xu, S. Deng, J. Chen, J. She, H.P.D. Shieh, P. T. Liu, and Y. P. Huang, IEEE Trans. Electron Dev., 58, 1121 (2011). [DOI: http://dx.doi.org/10.1109/TED.2011.2105879]   DOI
12 P. Kofstad, Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides (Wiley Interscience, New York, 1972).