• Title/Summary/Keyword: IGF-1 mRNA

Search Result 92, Processing Time 0.02 seconds

THE EFFECTS OF INSULIN-LIKE GROWTH FACTOR I (IGF-I) ON EXPRESSION OF VASCULAR ENDOTHELIAL GROWTH FACTOR (VEGF) MRNA IN MG-63 OSTEOBLASTLIKE CELLS (MG-63 세포주에서 Vascular Endothelial Growth Factor (VEGF) mRNA 발현에 대한 Insulin-like Growth Factor I (IGF-I)의 효과에 대한 연구)

  • Suh, Je-Duck;Myung, Hoon;Kang, Nara;Choung, Pill-Hoon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.31 no.5
    • /
    • pp.363-369
    • /
    • 2005
  • Purpose: To determine the role of Insulin-like Growth Factor-I (IGF-I) in the regulation of Vascular Endothelial Growth Factor (VEGF) expression in MG-63 cells and then to find the mechanism b which this regulation occurs. Materials and methods: MG-63 cells were grown to confluence in 60-mm dishes. To determine the effects of IGF-I on expression of VEGF mRNA according to time and concentration, the cells were treated with 10 nM IGF-I, following isolation of total RNA and Northern blot analysis after 1, 2, 4, 8, 12, 24 hours and after 2 hours of treatment with 0.5, 2, 10, 25, 50 nM IGF-I respectively, isolation of total RNA and Northern blot analysis were followed. To determine the mechanism of action of IGF-I, inhibitors such as hydroxyurea $(76.1\;{\mu}g/ml)$, actinomycin D $(2.5\;{\mu}g/ml)$, cycloheximide $(10\;{\mu}g/ml)$ were added 1 hour after treatment of 10 nM IGF-I. Results: 1. the expression of VEGF mRNA was increased with treatment of IGF-I. 2. The expression of VEGF mRNA was increased according to time-and concentration dependent manner of IGF-I. 3. The effect of IGF-I was decreased by hydroxyuera, actinomycin D, but not by cycloheximide. Conclusion: IGF-I regulate the expression of VEGF mRNA in the level of DNA synthesis and transcription. These results could suggest that IGF-I plays an important role in angiogenesis in the process of new bone formation and remodeling.

Insulin - Like Growth Factor-I Effects on the Proliferation and Bone Matrix Protein Gene Expression of MC3T3-E1 Cell (MC3T3-E1 세포증식 및 골기질 단백질 발현에 대한 인슐린유사성장인자-I의 효과)

  • Lee, Dong-Sik;Lee, Jae-Mok;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.30 no.2
    • /
    • pp.389-405
    • /
    • 2000
  • The purpose of this study is to evaluate the effect of IGF-I for DNA synthetic activity and the mRNA expression of bone matrix protein, type I collagen and osteopontin in prolifetation and differentiation of MC3T3-E1 cells. To evaluate DNA synthetic activity, cells were seeded at $2{\times}10^4cells/ml$ in 24 well plates and to evaluate mRNA of type I collagen and osteopontin cells were seeded at $5{\times}10^5cells/ml$ in 100mm culture dishes. These cells were cultured in alpha-minimum essential medium(${\alpha}-MEM$) containing 10% fetal bovine serum at $37^{\circ}C$, 5% $CO_2$ incubator. For DNA synthetic activity test 1, 10, 100ng/ml IGF-I were added to the cells which had been cultured for 3 days before 24 hours. For type I collagen mRNA expression 1, 10ng/ml IGF-I were added to the cells which had been cultured for 5, 10 days and for osteopontin mRNA expression 0.1, 1, 10ng/ml IGF-I were added to the cells which had been cultured for 5, 15, 20 days. Cell proliferaton was measured by the incorporation of [$^3H$]-thymidine into DNA and expression for type I collagen and osteopontin were measured by northern blot analysis. The results were as follows : DNA synthetic activity were generally higher in experimental group than control group. Expressions of type I collagen mRNA were higher at 5 day group and much lower at 10 day group in the control groups. In the experimental groups, mRNA expressions were slightly increased when 1 ng/ml IGF-I were added to 5 day group and decreased in all experimental 10 day groups. Expressions of osteopontin mRNA were higher at 20 day groups and lower at 15 day groups than the control groups. In the experimental groups, mRNA expressions were incereased when 0.1, 1 ng/ml IGF-I were added to 5 day group and in all the 15 day groups, but decreased when 0.1, 1, 10 ng/ml IGF-I were added to 20 day groups. IGF-I stimulated DNA synthetic activity of MC3T3-E1 cells during proliferation stage significantly, did not greatly changed effects on type I collagen mRNA expression and stimulated osteopontin mRNA expression at 15 day especially. In conclusion, we suggests that IGF-I have a tendency of stimulation effect of DNA synthetic activity but do not stimulate type I collagen mRNA in proliferation stage of MC3T3-E1 cell cultures, and stimulate osteopontin mRNA in differentiation stage of MC3T3-E1 cell cultures.

  • PDF

Expression of IGF-1 and Its Receptor Genes in the Oocytes and Preimplantation Embryos in Mouse (생쥐 난자와 착상전 초기배아에서 IGF-1과 IGF-1 수용체 유전자 발현)

  • 김종월;김성례;윤현수;이정헌;채영규;김문규
    • Development and Reproduction
    • /
    • v.3 no.1
    • /
    • pp.69-74
    • /
    • 1999
  • Insulin-like growth factors (IGF-1 and IGF-2) play an important regulatory role in premplantation embryonic development. To study the role of IGF-1 during premplantation embryonic development in mouse, the presence of mRNA transcripts for IGF-1 and IGF-lR in the oocytes and preimplantation embryos was examined. In this study, the transcripts of IGF-1 was detected in oocytes using primers for IGF-1. The PCR products were identified by Msp I restriction enzyme digest. We revealed that the transcripts of IGF-1 and IGF-1R were presented in the oocytes and preimplantation embryos. The highest mRNA levels in GV stage oocytes were decreased at 4- or 8-cell stage and then reincreased upto blastocyst. The presence of IGF-1 and IGF-lR in GV-oocytes suggests that the transcripts in the early stage embryos were derived from maternal genome. Additionally, the presence of IGF-1 and IGF-lR in the oocytes and preimplantation embryos suggests that IGF-1 plays an autocrine role during preimplantation embryonic development through IGF-lR as a signalling pathway.

  • PDF

Inhibition of mIGF-1 and mGHR Gene Expression using Tetracycline-Inducible RNAi System in Mouse Liver Cell (Tetracycline 유도적인 RNAi System을 이용한 생쥐 성장 관련 유전자의 발현 억제)

  • Son, Hye Jin;Koo, Bon Chul;Kwon, Mo Sun;Lee, Young Man;Kim, Teoan
    • Reproductive and Developmental Biology
    • /
    • v.38 no.3
    • /
    • pp.99-105
    • /
    • 2014
  • In this study, to further understand the mechanism of animal growth and to develop a miniature transgenic animal model, we constructed and tested tetracycline-inducible RNAi system using shRNA targeting the mRNA of mouse insulin-like growth factor (mIGF-1) or mouse growth hormone receptor (mGHR) gene. Quantitative real-time PCR analysis of mouse liver cell (Hepa1c1c7) cells transfected with these vectors showed 85% or 90% of expression inhibition effect of IGF-1 or GHR, respectively. In ELISA analysis, the protein level of IGF-1 in the cells expressing the shRNA targeting IGF-1 mRNA was reduced to 26% of non-transformed control cells. Unexpectedly, in case of using shRNA targeting GHR, the IGF-1 protein level was decreased to 75% of control cells. Further experiments are needed to explain the lower interference effect of GHR shRNA in IGF-1 protein. Accumulated knowledge of this approach could be applicable to a variety of related biological area including gene function study, gene therapy, development of miniature animals, etc.

Insulin-like Growth Factor-I Induces Plectin and MACF1 Expression in C2C12 Myotubes (C2C12 myotube에서 insulin-like growth factor-I이 plectin과 MACF1 발현에 미치는 영향)

  • Kim, Hye Jin;Hwang, Ji Sun;Kwak, Yi-Sub;Lee, Won Jun
    • Journal of Life Science
    • /
    • v.22 no.12
    • /
    • pp.1651-1657
    • /
    • 2012
  • Plectin and microtubule actin cross-linking factor 1 (MACF1) are architectural proteins that contribute to the function of skeletal muscle as generators of mechanical force. However, the influence of insulin- like growth factor-I (IGF-I), a master regulator of skeletal muscle cells, on plectin and MACF1 in skeletal muscle cells has not been demonstrated. The effect of IGF-I on plectin and MACF1 gene expression was investigated by treating differentiated C2C12 murine skeletal muscle cells with 20 ng/ml of IGF-I at different time points. The IGF-I treatment increased plectin protein expression in a dose-dependent manner. The mRNA level of plectin was measured by real-time quantitative PCR to determine if plectin induction was regulated pretranslationally. IGF-I treatment resulted in a very rapid induction of plectin mRNA transcript in C2C12 myotubes. Plectin mRNA increased by 140 and 180% after 24 and 48 hours of IGF-I treatment, respectively, and returned to the control level after 72 hours of IGF-I treatment. MACF1 mRNA increased 86 and 90% after 24 and 48 hours of IGF-I treat-ment, respectively, and returned to the control level after 72 hours of IGF-I treatment. These results suggested that the plectin gene is regulated pretranslationally by IGF-I in skeletal muscle cells. In conclusion, IGF-I induces a rapid transcriptional modification of the plectin and MACF1 genes in C2C12 skeletal muscle cells and has modulating effects on a cytolinker protein as well as on contractile proteins.

Alteration of Insulin-like Growth Factor(IGF)-I and IGF-Binding Proteins in Renal Development and Regeneration (신장발육 및 재생에 따른 insulin-like growth factor(IGF)-I 및 IGF-binding protein의 변화)

  • Park Sung-Kwang;Koh Gou-Young;Lee Dae-Yeol
    • Childhood Kidney Diseases
    • /
    • v.3 no.2
    • /
    • pp.109-116
    • /
    • 1999
  • Purpose: Insulin-like growth factor(IGF)-I and -II are peptide growth factor whose activity is modulated by interaction with the family of six IGF-binding proteins(IGFBPs). IGF-I is detected in rat kidney and has metabolic and growth effects. This study was designed to examine temporal expression of IGFBPs in kidney during renal development and postischemic regeneration in rat. Method: The expression of IGFBPs in kidney during renal development from 15th day of gestation to adult life by using Northern blot analysis. We also examined the renal IGF-IGFBP axis in uremic rat by using Northern blot and immunohistochemistry. Results: The mRNA of IGFBP-1 and -3 were not or barely detected in fetal stages. However, the mRNA level of IGFBP-1 and -3 were increased gradually from day 7 after birth to adult. In contrast, the mRNA of IGFBP-2 and -5 were highly expressed in fetal stages and maintained almost same levels until day 7 (IGFBP-2) or day 30 (IGFBP-5) after birth, then their levels decreased markedly. The mRNA of IGFBP-4 were expressed moderately in fetal kidney and increased gradually after birth. Interestingly, the mRNA of IGFBP-1 and-4 were induced up to 3-5 fold during maximum regeneration period and were recovered to normal levels after acute ischemic injury. In contrast, the mRNA level of IGFBP-3 and-IGFBPrP-1 were decreased slightly at 1 day after ischemic injury, then recovered to normal level during maximum regeneration period. Conclusion: There were differential expressions of IGFBPs in kidney that can modulate IGF action on developing, differentiating, maintaining, and regenerating renal structure and function.

  • PDF

Insulin-like Growth Factor-I Induces FATP1 Expression in C2C12 Myotubes (C2C12 myotube에서 Insulin-like growth factor-I 이 FATP1 발현에 미치는 영향)

  • Kim, Hye Jin;Lee, Won Jun
    • Journal of Life Science
    • /
    • v.24 no.12
    • /
    • pp.1284-1290
    • /
    • 2014
  • Fatty acid transporter protein 1 (FATP1) is highly expressed in skeletal muscle and modulates fatty acid uptake and metabolism. However, the influence of insulin-like growth factor-I (IGF-I), a master regulator of skeletal muscle cells, on FATP1 in skeletal muscle cells has not been demonstrated. To investigate the effect of IGF-I on FATP1 and the expression of the IGFBP5 protein, differentiated C2C12 murine skeletal muscle cells were treated with 20 ng/ml of IGF-I at different time points. The results showed that IGF-I increased FATP1 and IGFBP5 protein expression in a time-dependent manner. To determine whether this induction of FATP1 by the IGF-I treatment was regulated pretranslationally, the mRNA level of FATP1 was measured by real-time quantitative PCR. The IGF-I treatment resulted in very rapid induction of the FATP1 mRNA transcript in C2C12 myotubes. FATP1 mRNA increased 169% and 132% after 24 and 48 h of the IGF-I treatment, respectively, and it returned to control levels after 72 h of the treatment, suggesting that the FATP1 gene is regulated pretranslationally by IGF-I in skeletal muscle cells. This is the first evidence that IGF-I can regulate the expression of FATP1. In conclusion, IGF-I induced rapid transcriptional modification of the FATP1 gene in C2C12 skeletal muscle cells and had modulating effects on fatty acid uptake proteins and oxidative proteins.

A Study on the Longitudinal Bone Growth of Growth-stimulating Material with Eleutherococcus senticosus (가시오가피가 함유된 성장촉진용 조성물의 골성장효과 연구)

  • Yang, Dong-Sik;Cha, Min-Ho;Kang, Bong-Joo;Oh, Se-Wook;Kim, Young-Eon;Yoon, Yoo-Sik
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.702-707
    • /
    • 2003
  • This study was conducted to evaluate the effect of a growth-stimulating material (GSM) containing Eleutherococcus senticosuson on the longitudinal bone growth. The effects of GSM on proliferation zone and IGF-1 mRNA expression in rat growth plate, IGF-1 mRNA expression in MG-63 osteoblast and Hep-G2 hepatocyte, and bone growth of mouse tibia were studied. GSM significantly increased the proliferation zone in growth plate of proximal tibia (P<0.001) and the IGF-1 mRNA expression in growth plate was also increased (P<0.01). Treatment of GSM to MG-63 osteoblast and Hep-G2 hepatocyte also increased IGF-1 mRNA expression more than twice. In addition, bone mineral density of mouse tibia was significantly increased by GSM (P<0.05). Therefore, it was shown that GSM has an activity of bone growth promotion by increasing the expression of IGF-1, a major bone growth factor.

The Effect of Growth Hormone on mRNA Expression of the GABAB1 Receptor Subunit and GH/IGF Axis Genes in a Mouse Model of Prader-Willi Syndrome

  • Lee, Jin Young;Jin, Dong-Kyu
    • Journal of mucopolysaccharidosis and rare diseases
    • /
    • v.1 no.2
    • /
    • pp.54-59
    • /
    • 2015
  • Purpose: Growth hormone (GH) therapy substantially improves several cognitive functions in PWS. However, the molecular mechanisms underlying the beneficial effects of GH on cognition remain unclear in PWS. In this study, we investigated the effects of recombinant human GH on the gene expression of GABAB receptor subunits and GH/insulin-like growth factor (IGF) axis genes in the brain regions of PWS-mimicking mice (Snord116del). Methods: Snord116del mice were injected subcutaneously with 1.0 mg/kg GH or saline, once daily for 7 days. The collected brain tissues were analyzed for mRNA content using quantitative PCR (qPCR) in the cerebellum, hippocampus, and cerebral cortex. Results: GH increased the mRNA expression level of the $GABA_{B1}$ receptor subunit ($GABA_{BR1}$) and IGF-1R in the cerebellum. Furthermore, a significant positive correlation was found between the level of $GABA_{BR1}$ mRNA and the expression of the IGF-1R transcript. GH also induced an increase in the mRNA expression of IGF-2 and IGF-2R in the cerebellum. Conclusion: These data indicate that GH may provide beneficial effects on cognitive function through its influences on the expression of $GABA_{BR1}$ and GH/IGF-1 axis genes in PWS patients.

The roles of PKC-δ on the regulation of insulin-like growth factor(IGF)-I and insulin-Like growth factor binding protein-3 secretion by all-trans retinoic acid in MCF-7 cell (MCF-7 cell에서 all-trans retinoic acid에 의한 insulin-like growth factor-I와 insulin-like growth factor binding protein-3 분비조절에 있어서 PKC-δ의 역할)

  • Lee, Sun-Mi;Kim, Sang-Hoon;Choi, Kwang-Soo;Kang, Chang-Won
    • Korean Journal of Veterinary Research
    • /
    • v.46 no.2
    • /
    • pp.97-105
    • /
    • 2006
  • All-trans retinoic acid (AtRA) induces growth inhibition and apoptosis in a variety of tumer cells, including MCF-7 cells. Insulin-like growth factors (IGFs) system has been reported to be associated with the development of cancer. Although MCF-7 cell with AtRA is to be the major stimulus for the cell growth and apoptosis, the mechanism of insulin-like growth factor-I (IGF-I)/insulin-like growth factor binding protein-3 (IGFBP-3) system remains to be elucidated. Thus, this study was conducted to the effect of AtRA on the gene expression and level of IGF-I and IGFBP-3. In addition, we investigated the involvement of PKC-${\delta}$ on the IGF-I and IGFBP-3 secretion in MCF-7 cell. AtRA(${\geq}10^{-7}M$) decreased the IGF-1 secretion and mRNA expressions, but increased IGFBP-3 secretion and mRNA expressions in MCF-7 cells. Especially, the treatment of AtRA at 72 hours caused a significant reduction in the IGF-I secretion and mRNA expressions but increment in IGFBP-3 secretion and mRNA expressions (p < 0.05). $10^{-7}M$ AtRA activated PKC-${\delta}$ that is one among PKC-$\iota$, ${\alpha}$, ${\lambda}$ and ${\delta}$ in MCF-7 cell. Rotllerin, a PKC-${\delta}$ inhibitor, blocked AtRA-induced inhibition of the IGF-I and mRNA expressions, and increase of lGFBP-3 and mRNA expressions in MCF-7 cell. Together, AtRA inhibited the IGF-I secretion and mRNA expressions, but increased IGFBP-3 secretion and mRNA expressions in MCF-7 cell. Furthermore, AtRA-induced alteration of IGF-I, IGFBP-3 secretion, and the gene expressions were mediated via PKC-${\delta}$ activity.