• Title/Summary/Keyword: IGBT(Insulated gate bipolar mode transistor)

Search Result 11, Processing Time 0.028 seconds

Reverse-Conducting IGBT Using MEMS Technology on the Wafer Back Side

  • Won, Jongil;Koo, Jin Gun;Rhee, Taepok;Oh, Hyung-Seog;Lee, Jin Ho
    • ETRI Journal
    • /
    • v.35 no.4
    • /
    • pp.603-609
    • /
    • 2013
  • In this paper, we present a 600-V reverse conducting insulated gate bipolar transistor (RC-IGBT) for soft and hard switching applications, such as general purpose inverters. The newly developed RC-IGBT uses the deep reactive-ion etching trench technology without the thin wafer process technology. Therefore, a freewheeling diode (FWD) is monolithically integrated in an IGBT chip. The proposed RC-IGBT operates as an IGBT in forward conducting mode and as an FWD in reverse conducting mode. Also, to avoid the destructive failure of the gate oxide under the surge current and abnormal conditions, a protective Zener diode is successfully integrated in the gate electrode without compromising the operation performance of the IGBT.

A Study on Electrical Characteristics Improvement on Field Stop IGBT Using Trench Gate Structure (Trench Gate를 이용한 Field Stop IGBT의 전기적 특성 분석에 관한 연구)

  • Nam, Tae-Jin;Jung, Eun-Sik;Chung, Hun-Suk;Kang, Ey-Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.4
    • /
    • pp.266-269
    • /
    • 2012
  • The most recently IGBT (insulated gate bipolar mode transistor) devices are in the most current conduction capable devices and designed to the big switching power device. Use this number of the devices are need to high voltage and low on-state voltage drop. And then in this paper design of field stop IGBT is insert N buffer layer structure in NPT planar IGBT and optimization design of field stop IGBT and trench field stop IGBT, both devices have a comparative analysis and reflection of the electrical characteristics. As a simulation result, trench field stop IGBT is electrical characteristics better than field stop IGBT.

Development of 900 V Class MOSFET for Industrial Power Modules (산업 파워 모듈용 900 V MOSFET 개발)

  • Chung, Hunsuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.2
    • /
    • pp.109-113
    • /
    • 2020
  • A power device is a component used as a switch or rectifier in power electronics to control high voltages. Consequently, power devices are used to improve the efficiency of electric-vehicle (EV) chargers, new energy generators, welders, and switched-mode power supplies (SMPS). Power device designs, which require high voltage, high efficiency, and high reliability, are typically based on MOSFET (metal-oxide-semiconductor field-effect transistor) and IGBT (insulated-gate bipolar transistor) structures. As a unipolar device, a MOSFET has the advantage of relatively fast switching and low tail current at turn-off compared to IGBT-based devices, which are built on bipolar structures. A superjunction structure adds a p-base region to allow a higher yield voltage due to lower RDS (on) and field dispersion than previous p-base components, significantly reducing the total gate charge. To verify the basic characteristics of the superjunction, we worked with a planar type MOSFET and Synopsys' process simulation T-CAD tool. A basic structure of the superjunction MOSFET was produced and its changing electrical characteristics, tested under a number of environmental variables, were analyzed.

An Excess Carrier Lifetime Extraction Method for Physics-based IGBT Models

  • Fu, Guicui;Xue, Peng
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.778-785
    • /
    • 2016
  • An excess carrier lifetime extraction method is derived for physics-based insulated gate bipolar transistor (IGBT) models with consideration of the latest development in IGBT modeling. On the basis of the 2D mixed-mode Sentaurus simulation, the clamp turn-off test is simulated to obtain the tail current. The proposed excess carrier lifetime extraction method is then performed using the simulated data. The comparison between the extracted results and actual lifetime directly obtained from the numerical device model precisely demonstrates the accuracy of the proposed method.

A Real Time Model of Dynamic Thermal Response for 120kW IGBT Inverter (120kW급 IGBT 인버터의 열 응답 특성 실시간 모델)

  • Im, Seokyeon;Cha, Gangil;Yu, Sangseok
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.2
    • /
    • pp.184-191
    • /
    • 2015
  • As the power electronics system increases the frequency, the power loss and thermal management are paid more attention. This research presents a real time model of dissipation power with junction temperature response for 120kw IGBT inverter which is applied to the thermal management of high power IGBT inverter. Since the computational time is critical for real time simulation, look-up tables of IGBT module characteristic curve are implemented. The power loss from IGBT provides a clue to calculate the temperature of each module of IGBT. In this study, temperature of each layer in IGBT is predicted by lumped capacitance analysis of layers with convective heat transfer. The power loss and temperature of layers in IGBT is then communicated due to mutual dependence. In the dynamic model, PWM pulses are employed to calculation real time IGBT and diode power loss. Under Matlab/Simulink$^{(R)}$ environment, the dynamic model is validated with experiment. Results showed that the dynamic response of power loss is closely coupled with effective thermal management. The convective heat transfer is enough to achieve proper thermal management under guideline temperature.

A Study on Effective Control Methodology for DC/DC Converter (DC/DC 컨버터의 효율적인 제어기법 연구)

  • Lho, Young Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.7
    • /
    • pp.756-759
    • /
    • 2014
  • DC/DC converters are commonly used to generate regulated DC output voltages with high-power efficiencies from different DC input sources. The converters can be applied in the regenerative braking of DC motors to return energy back to the supply, resulting in energy savings for the systems at periodic intervals. The fundamental converter studied here consists of an IGBT (Insulated Gate Bipolar mode Transistor), an inductor, a capacitor, a diode, a PWM-IC (Pulse Width Modulation Integrated Circuit) controller with oscillator, amplifier, and comparator. The PWM-IC is a core element and delivers the switching waveform to the gate of the IGBT in a stable manner. Display of the DC/DC converter output depends on the IGBT's changes in the threshold voltage and PWM-IC's pulse width. The simulation was conducted by PSIM software, and the hardware of the DC/DC converter was also implemented. It is necessary to study the fact that the output voltage depends on the duty rate of D, and to compare the output of experimental result with the theory and the simulation.

A Study on the Properties of the Dual-mode Plasma Torch System for Melting the Non-conductive Waste (비전도성 폐기물 용융처리를 위한 혼합형 플라즈마토치 시스템 특성 연구)

  • Moon, Young-Pyo;Choi, Jang-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.1
    • /
    • pp.73-80
    • /
    • 2016
  • The preliminary test for the dual mode plasma torch system was carried out to explore the operation properties in advance. The dual mode plasma torch system that is able to operate in transferred, non-transferred, or dual mode is very adequate for melting the mixed wastes including nonconductive materials such as concrete, asbestos, etc. since it exploits both the high efficiency of heat transfer to the melt in transferred mode and stable operation in non-transferred mode. Also, system operation including restarting is reliable and very easy. A stationary melter with a refractory structure was designed and manufactured considering the melting behavior of slags to minimize the refractory erosion. The power supply for the dual mode plasma torch system built with high power insulated gate bipolar transistor (IGBT) modules has functions for both current control and voltage control and is sufficient to suppress the harmonics during the operation of the plasma torch. The power supply provides two different voltages for transferred operation and non-transferred. It is confirmed that the operation voltage in transferred is always higher than non-transferred. The dual mode plasma torch system was successfully developed and is under operation for a melting experiment to optimize operation data.

Vector Controlled Inverter for Elevator Drive (ELEVATOR 구동용 VECTOR 제어 인버터)

  • Shin, H.J.;Jang, S.Y.;Lee, S.J.;Lee, S.D.
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.627-630
    • /
    • 1991
  • This study is about vector controlled inverter for high quality elevator drive that is to improve the settling accuracy of elevator car and passenger's comfort in commercial buildings. In this study, an instantaneous space vector control type inverter was used to reduce the torque ripple ant to improve the velocity follow-up. This method calculates Instantaneous actual output torque and flux of induction motor by voltage and current, then compares them with a reference values by a speed regulator. The outputs of comparators select a switching mode, for an optimal voltage vector. Also, this study used IGBT (Insulated Gate Bipolar-Transistor), a high speed switching element, to reduce sound noise level, and DSP (Digital Signal Processor) was used to improve the reliability of the control circuit by fully digitalization.

  • PDF

Analysis on Insulation and Protection Characteristics of Grid Connected ESS in Ground/Short-Circuit Fault (지/단락실증시험에서 MW급 계통연계형 ESS 절연/보호시스템 성능 분석에 관한 연구)

  • Kim, Jin-Tae;Lee, Seung-Yong;Park, Sang-Jin;Cha, Han-Ju;Kim, Soo-Yeol
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.2
    • /
    • pp.119-122
    • /
    • 2020
  • With recent ESS (Energy Storage System) fire accident, the fault protection performance is becoming more important. However, there has never been any experiments with the protection performance on the faults in the ESS system level. In this study, the effect of AC ground fault and IGBT (Insulated Gate Bipolar mode Transistor) short-circuit failure on MW class ESS was performed experimentally for the first time in the world. First of all, the effect of the AC single line ground fault on battery was analyzed. Moreover, the transient voltage was investigated as a function of the battery capacity and the power level. Finally, the breaking capability and insulation performance of ESS were examined under PCS short-circuit fault condition. Through the tests, it was found that ESS protection system safely blocked the faulty current regardless of the faults, whereas the electronic parts such as IGBT and MC (Magnetic Contactor) were broken by the fault current. Also, the electrical breakdown in ESS resulted from the transient voltage during the protection process.

Robust Design for Parts of Induction Bolt Heating System (유도가열시스템의 구성부품에 대한 강건설계)

  • Kim, Doo Hyun;Kim, Sung Chul;Lee, Jong Ho;Kang, Moon Soo;Jeong, Cheon Kee
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.2
    • /
    • pp.10-17
    • /
    • 2021
  • This paper presents the robust design of each component used in the development of an induction bolt heating system for dismantling the high-temperature high-pressure casing heating bolts of turbines in power plants. The induction bolt heating system comprises seven assemblies, namely AC breaker, AC filter, inverter, transformer, work coil, cable, and CT/PT. For each of these assemblies, the various failure modes are identified by the failure mode and effects analysis (FMEA) method, and the causes and effects of these failure modes are presented. In addition, the risk priority numbers are deduced for the individual parts. To ensure robust design, the insulated-gate bipolar transistor (IGBT), switched-mode power supply (SMPS), C/T (adjusting current), capacitor, and coupling are selected. The IGBT is changed to a field-effect transistor (FET) to enhance the voltage applied to the induction heating system, and a dual-safety device is added to the SMPS. For C/T (adjusting current), the turns ratio is adjusted to ensure an appropriate amount of induced current. The capacitor is replaced by a product with heat resistance and durability; further, coupling with a water-resistant structure is improved such that the connecting parts are not easily destroyed. The ground connection is chosen for management priority.