• Title/Summary/Keyword: IF steel

Search Result 885, Processing Time 0.03 seconds

Evaluation on the Maximum Yield Strength of Steel Stirrups in Reinforced Concrete Beams (철근콘크리트 보에 사용된 전단보강철근의 항복강도 제한에 대한 평가)

  • Lee, Jin-Eun;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.685-693
    • /
    • 2012
  • The yield strength of shear reinforcement is restricted in the present design codes. In this study, the possibility of the yield strength increase in shear reinforcement is evaluated according to ACI318-08, EC2-02 and CSA-04 by comparing the experimental and calculated results. Three cases were used to analyze the shear strength of the beam. One had no limitation in the yield strength of shear reinforcement, another had restriction on the yield strength of shear reinforcement, and the other had a restriction on the yield strength of shear reinforcement and the shear reinforcement ratio. The study results showed that the case with unlimited shear reinforcement yield strength predicted the test result better than other two cases. Even though the rebar yield strength higher than the strength required in present code was applied to existing shear design equation, the result was reasonable. Therefore, the design equation seemed to be appropriate even if the high-strength shear reinforcement is used in practice based on the existing shear design method.

Study on Following of Parmeter ${\alpha}$ of 2-DOF PID Controller Using Fuzzy Algorithm

  • Lee, Sang-Min;Cho, Yong-Sung;Park, Jong-Oh;Choo, Yeon-Gyu;Lim, Young-Do
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.307-311
    • /
    • 2003
  • 2-mass system is generally used as controller of the variable-speed to transfer electromotion power to mechanical load such as industrial robot, driving parts of electric vehicle, rolling machine system of steel plant and driving parts of elevator. In this case, PI controller is often used as a velocity controller because of simplicity of system. But PI control algorithm is not enough for obtaining the control characteristics required for this system. To solve this problem, 2-mass system based on the PID controller derives the optimum PID parameters by pole assignment and estimation of the ITAE performance index. In this case, the system have tenacious properties about disturbance, but it causes extreme overshoot and vibration because of rapidly output of controller in early transient response about desired value. And if speed control system is applied by 2-DOF parameter ${\alpha}$, a temporary value, we must induce most suitable parameter by complicate pole assignment and estimation of the ITAE performance index whenever ${\alpha}$ changes. In this paper, to solve this problem we suggest control algorithm to followed exactly value of ${\alpha}$ as 2-DOF parameter by using fuzzy algorithm . So, intelligence algorithm modeled by human knowledge, experience, teachability and judgment follow exact ${\alpha}$ value and it can compose the efficient 2-DOF PID controller to improve following performance, overshoot decrease.

  • PDF

Development of Quasi-Conforming Shell Element for the Three Dimensional Construction Stage Analysis of PSC Bridge (PSC 교량의 3차원 시공 중 해석기법을 위한 준적합 쉘 요소 개발)

  • Kim, Ki-Du;Byun, Yun-Joo;Kim, Hyun-Ky;Lomboy, Gilson R.;Suthasupradit, Songsak;Kim, Young-Hoe
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.329-338
    • /
    • 2007
  • The PSC box bridge constructed of concrete, reinforcing bar and tendon is a complex structure that exhibits tension cracks, nonlinear behaviour of steel and time dependent behaviour of concrete. The frame element is commonly used for construction stage analysis PSC bridges. However, the frame element does not show sufficient information when in the curved PSC box bridges. For the case of curved PSC bridges, the deformations in the inner and outer web are different. In this case, different jacking forces are required in the inner and outer webs. However, it is impossible to calculate different jacking forces if we use the frame element for construction stage analysis. In order to overcome this problem, the use of the shell element is essential for a three-dimensional construction stage analysis of PSC bridges. In the following, the formulation of a Quasi-conforming shell element and its application of PSC box girder bridge analysis are presented.

Damage detection of 3D printed mold using the surface response to excitation method

  • Tashakori, Shervin;Farhangdoust, Saman;Baghalian, Amin;McDaniel, Dwayne;Tansel, Ibrahim N.;Mehrabi, Armin
    • Structural Engineering and Mechanics
    • /
    • v.75 no.3
    • /
    • pp.369-376
    • /
    • 2020
  • The life of conventional steel plastic injection molds is long but manufacturing cost and time are prohibitive for using these molds for producing prototypes of products in limited numbers. Commonly used 3D printers and rapid prototyping methods are capable of directly converting the digital models of three-dimensional solid objects into solid physical parts. Depending on the 3D printer, the final product can be made from different material, such as polymer or metal. Rapid prototyping of parts with the polymeric material is typically cheaper, faster and convenient. However, the life of a polymer mold can be less than a hundred parts. Failure of a polymeric mold during the injection molding process can result in serious safety issues considering very large forces and temperatures are involved. In this study, the feasibility of the inspection of 3D printed molds with the surface response to excitation (SuRE) method was investigated. The SuRE method was originally developed for structural health monitoring and load monitoring in thin-walled plate-like structures. In this study, first, the SuRE method was used to evaluate if the variation of the strain could be monitored when loads were applied to the center of the 3D printed molds. After the successful results were obtained, the SuRE method was used to monitor the artifact (artificial damage) created at the 3D printed mold. The results showed that the SuRE method is a cost effective and robust approach for monitoring the condition of the 3D printed molds.

Numerical technique for chloride ingress with cover concrete property and time effect

  • Lee, Bang Yeon;Ismail, Mohamed A.;Kim, Hyeok-Jung;Yoo, Sung-Won;Kwon, Seung-Jun
    • Computers and Concrete
    • /
    • v.20 no.2
    • /
    • pp.185-196
    • /
    • 2017
  • Durability problems initiated from steel corrosion are unseen but critical issues, so that many researches are focused on chloride penetration evaluation. Even if RC (Reinforced Concrete) structures are exposed to normal environment, chloride ingress varies with concrete surface conditions and exposed period. This paper presents an analysis technique for chloride behavior evaluation considering time effect on diffusion and surface conditions assumed as double-layered system. For evaluation of deteriorated surface condition, field investigation was performed for concrete pavement exposed to deicing agent for 18 years. In order to consider enhanced surface concrete, chloride profiles in surface-impregnated concretes exposed to chloride attack for 2 years from previous research were investigated. Through reverse analysis, effectively deteriorated/enhanced depth of surface and the related reduced/enlarged diffusion coefficient in the depth are simulated. The proposed analysis technique was evaluated to handle the chloride behavior more accurately considering changes of chloride ingress within surface layer and decreased diffusion coefficient with time. For the concrete surface exposed to deicing agent, the deteriorated depth and enlarged diffusion coefficient are evaluated to be 12.5~15.0 mm and 200% increasing diffusion coefficient, respectively. The results in concrete containing enhanced cover show 10.0~12.5 mm of impregnated depth and 85% reduction of chloride diffusion in tidal and submerged conditions.

Transcutaneous electrical nerve stimulation, acupuncture, and spinal cord stimulation on neuropathic, inflammatory and, non-inflammatory pain in rat models

  • Sato, Karina Laurenti;Sanada, Luciana Sayuri;da Silva, Morgana Duarte;Okubo, Rodrigo;Sluka, Kathleen A.
    • The Korean Journal of Pain
    • /
    • v.33 no.2
    • /
    • pp.121-130
    • /
    • 2020
  • Background: Transcutaneous electrical nerve stimulation (TENS), manual acupuncture (MA), and spinal cord stimulation (SCS) are used to treat a variety of pain conditions. These non-pharmacological treatments are often thought to work through similar mechanisms, and thus should have similar effects for different types of pain. However, it is unclear if each of these treatments work equally well on each type of pain condition. The purpose of this study was to compared the effects of TENS, MA, and SCS on neuropathic, inflammatory, and non-inflammatory pain models. Methods: TENS 60 Hz, 200 ㎲, 90% motor threshold (MT), SCS was applied at 60 Hz, an intensity of 90% MT, and a 0.25 ms pulse width. MA was performed by inserting a stainless-steel needle to a depth of about 4-5 mm at the Sanyinjiao (SP6) and Zusanli (ST36) acupoints on a spared nerve injury (SNI), knee joint inflammation (3% carrageenan), and non-inflammatory muscle pain (intramuscular pH 4.0 injections) in rats. Mechanical withdrawal thresholds of the paw, muscle, and/or joint were assessed before and after induction of the pain model, and daily before and after treatment. Results: The reduced withdrawal thresholds were significantly reversed by application of either TENS or SCS (P < 0.05). MA, on the other hand, increased the withdrawal threshold in animals with SNI and joint inflammation, but not chronic muscle pain. Conclusions: TENS and SCS produce similar effects in neuropathic, inflammatory and non-inflammatory muscle pain models while MA is only effective in inflammatory and neuropathic pain models.

Structural Design of Polyethylene Boat Hull by using Longitudinal Bending Strength Test Method (종굽힘강도시험방법을 이용한 폴리에틸렌 보트 선체의 구조 설계)

  • Cho, Seok-Swoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8447-8454
    • /
    • 2015
  • ISO 12215-5 standard describes allowable stress design specifications of monohull small boat with a length of hull between 2.5 m and 24 m constructed from fiber reinforced plastics, aluminium or steel alloys, glued wood or other suitable boat building material. If small boat hull is under 2.5m in overall length or nonstandard material is used as boat building material, structural reliability of small boat hull is assured by drop test specification, but not by structural design specification in accordance with ISO 12215-5. Drop test specification of boat hull can be applied to manufactured product. But it is difficult and complicated to apply drop test specification to structural design of boat hull. In this study, we present structural design method of polyethylene boat hull on the basis of longitudinal bending strength test specification.

Nonlinear Numerical Analysis for Shear Dominant RC Columns Subjected to Lateral Force (전단거동이 우세한 기둥의 비선형 해석에 관한 연구)

  • Kim Ick-Hyun;Sun Chang-Ho;Lee Jong-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.467-476
    • /
    • 2004
  • Because of crack control by steel bars after cracking the material models for reinforced concrete(RC) differ from those for plain concrete(PL). The nonlinear behavior of columns subjected to lateral load was simulated with reasonable accuracy in 3D analysis by applying distinct material models for RC and PL zone subdivided properly on the section. The shear strain is confirmed to develope unstably with ununiform distribution in out-of-plane direction. And this tendency becomes stronger as the thickness of column member increases in out-of-plane direction. If this ununiformity in strain distribution is not taken into consideration the capacity and the deformability of columns in shear dominant failure are overestimated excessively in two dimensional analysis. By introducing equivalent softening model a behavior of columns can be predicted too in two dimensional analysis.

Development of Evaluation System for Fatigue Strength on the Connection Between Longitudinals and Transverse Web (유조선 종통보강재와 횡늑골 연결부의 피로강도 평가용 자동화 시스템 개발)

  • Hong, Ki-Sup;Kim, Sung-Chan;Ahn, Jae-Wook;Kim, Seong-Ki
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.5
    • /
    • pp.510-519
    • /
    • 2009
  • Ship structure is composed of the welded mixture members which are plate and stiffeners. Ship structure is also influenced by variable loadings such as wave and inertia load. There have been several fatigue damage problems on the connection between longitudinal and transverse web due to wide usage of high tensile steel and adoption of wide web space to improve shipbuilding productivity. It is impossible to estimate the fatigue lives for all connection details through refined fatigue analysis. It is necessary to use the simplified approach for the fatigue life estimation of the connection details. PLUS analysis, which is suggested by the classification society, is one of the simplified approaches and is widely adopted to get fatigue lives for the connection details along whole cargo hold area. However, ship building yards still have difficulties to get fatigue lives due to large amount of calculation and time even if this approach reduce the time and amount of calculation. This paper treats the computing system developed to reduce efforts of estimating the fatigue lives. The influence factors of mean shear stress and local dynamic pressure are easily calculated and fatigue lives for all hot spots can be estimated automatically by the developed computing system. It is possible to reduce computing time and efforts to get the fatigue lives for the connection details between longitudinals and transverse webs along the ship. This system was applied to get fatigue lives on the connection details of a VLCC and verified the availability.

Corrosion Characteristics of Welding Zone by Types of Repair Welding Filler Metals and Post Weld Heat Treatment

  • Lee, Sung-Yul;Moon, Kyung-Man;Lee, Yeon-Chang;Kim, Yun-Hae;Jeong, Jae-Hyun
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.4
    • /
    • pp.209-213
    • /
    • 2012
  • Recently, the fuel using in the diesel engines of marine ships has been changed to a low quality of heavy oil because of the steady increase in the price of oil. Therefore, the wear and corrosion in all parts of the engine such as the cylinder liner, piston crown, and spindle and seat ring of exhaust valves has correspondingly increased. The repair welding of a piston crown is a unique method for prolonging its lifetime from an economic point of view. In this case, filler metals with a high corrosion and wear resistance are mainly being used for repair welding. However, often at a job site on a ship, a piston crown is actually welded with mild filler metals. Therefore, in this study, mild filler metals such as CSF350H, E8000B2, and 435 were welded to SS401 steel as the base metal, and the corrosion properties of the weld metals with and without post weld heat treatment were investigated using some electrochemical methods in a 0.1% $H_2SO_4$ solution. The weld metal welded with CSF350H filler metal exhibited the best corrosion resistance among these filler metals, irrespective of the heat treatment. However, the weld metal zones of the E8000B2 and 435 filler metals exhibited better and worse corrosion resistance with the heat treatment, respectively. As a result, it is suggested that in the case of repair welding with CSF350H and 435 filler metals, no heat treatment is advisable, while heat treatment is desirable if E8000B2filler metal is used with repair welding.