• Title/Summary/Keyword: IEEE802.11e

Search Result 211, Processing Time 0.026 seconds

Performance Analysis of ROHC RTP profile for Efficient Utilization of the bandwidth in Mobile WiMAX (모바일 와이맥스에서의 효율적인 무선링크 대역폭 활용을 위한 헤더압축기법인 ROHC RTP 프로파일의 성능 분석)

  • Woo, Hyun-Je;Kim, Joo-Young;Kwon, Jeong-Min;Lee, Mee-Jeong
    • The KIPS Transactions:PartC
    • /
    • v.15C no.5
    • /
    • pp.399-408
    • /
    • 2008
  • Mobile WiMAX provides wireless broadband services for data communication based on IP protocol. The limitation of physical bandwidth in the radio links may cause performance degradation in providing wireless broadband services in WIMAX. To enhance the efficiency of the radio link utilization, Payload Header Suppression (PHS) is defined as an optional header compression mechanism for mobile WiMAX. It has, however, a very limited compression capability since it has very restrictive compression fields. In this paper, hence, we assumed the application of Robust Header Compression (ROHC), a header compression scheme proposed for links characterized by high bit error ratios, long round-trip times (RTT), and scarce resource, to Mobile WiMAX, and studied its performance. Previous studies on ROHC performance merely focused on the impact of high bit error rate. However, bit error is virtually transparent to ROHC in the wireless systems like WiMAX, since the MAC provides the bit error checking function. In order to evaluate the performance of ROHC in the Mobile WiMAX environments, therefore, we evaluated the performance of ROHC with respect to the packet losses instead of bit error. We investigated the impact of the ROHC parameters that are recommended for the implementation in the ROHC and compared the performance of ROHC with PHS.

An Admission Control Mechanism to guarantee QoS of Streaming Service in WLAN (WLAN에서 스트리밍 서비스의 QoS를 보장하기 위한 승인 제어 기술)

  • Kang, Seok-Won;Lee, Hyun-Jin;Lee, Kyu-Hwan;Kim, Jae-Hyun;Roh, Byeong-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.6B
    • /
    • pp.595-604
    • /
    • 2009
  • The HCCA reserves the channel resources based on the mean data rate in IEEE 802.11e. It may cause either the waste of channel resource or the increase of transmission delay at MAC layer if the frame size is rapidly varied when a compressed mode video codec such as MPEG video is used. To solve these problems, it is developed that the packet scheduler allocates the wireless resource adaptation by according to the packet size. However, it is difficult to perform the admission control because of the difficulty with calculating the available resources. In this paper, we propose a CAC mechanism to solve the problem that may not satisfy the QoS by increasing traffic load in case of using EDCA. Especially, the proposed CAC mechanism calculates the EB of TSs using the traffic information transmitted by the application layer and the number of average transmission according to the wireless channel environment, and then determines the admission of the TS based on the EB. According to the simulation results of the proposed CAC mechanism, it admitted the TSs under the loads which are satisfied within the delay bound. Therefore, the proposed mechanism guarantees QoS of streaming services effectively.

A New Interference-Aware Dynamic Safety Interval Protocol for Vehicular Networks

  • Yoo, Hongseok;Chang, Chu Seock;Kim, Dongkyun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.2
    • /
    • pp.1-13
    • /
    • 2014
  • In IEEE 802.11p/1609-based vehicular networks, vehicles are allowed to exchange safety and control messages only within time periods, called control channel (CCH) interval, which are scheduled periodically. Currently, the length of the CCH interval is set to the fixed value (i.e. 50ms). However, the fixed-length intervals cannot be effective for dynamically changing traffic load. Hence, some protocols have been recently proposed to support variable-length CCH intervals in order to improve channel utilization. In existing protocols, the CCH interval is subdivided into safety and non-safety intervals, and the length of each interval is dynamically adjusted to accommodate the estimated traffic load. However, they do not consider the presence of hidden nodes. Consequently, messages transmitted in each interval are likely to overlap with simultaneous transmissions (i.e. interference) from hidden nodes. Particularly, life-critical safety messages which are exchanged within the safety interval can be unreliably delivered due to such interference, which deteriorates QoS of safety applications such as cooperative collision warning. In this paper, we therefore propose a new interference-aware Dynamic Safety Interval (DSI) protocol. DSI calculates the number of vehicles sharing the channel with the consideration of hidden nodes. The safety interval is derived based on the measured number of vehicles. From simulation study using the ns-2, we verified that DSI outperforms the existing protocols in terms of various metrics such as broadcast delivery ration, collision probability and safety message delay.

Investigation and Testing of Location Systems Using WiFi in Indoor Environments

  • Retscher, Guenther;Mok, Esmond
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.83-88
    • /
    • 2006
  • Many applications in the area of location-based services and personal navigation require nowadays the location determination of a user not only in outdoor environment but also indoor. To locate a person or object in a building, systems that use either infrared, ultrasonic or radio signals, and visible light for optical tracking have been developed. The use of WiFi for location determination has the advantage that no transmitters or receivers have to be installed in the building like in the case of infrared and ultrasonic based location systems. WiFi positioning technology adopts IEEE802.11x standard, by observing the radio signals from access points installed inside a building. These access points can be found nowadays in our daily environment, e.g. in many office buildings, public spaces and in urban areas. The principle of operation of location determination using WiFi signals is based on the measurement of the signal strengths to the surrounding available access points at a mobile terminal (e.g. PDA, notebook PC). An estimate of the location of the terminal is then obtained on the basis of these measurements and a signal propagation model inside the building. The signal propagation model can be obtained using simulations or with prior calibration measurements at known locations in an offline phase. The most common location determination approach is based on signal propagation patterns, namely WiFi fingerprinting. In this paper the underlying technology is briefly reviewed followed by an investigation of two WiFi positioning systems. Testing of the system is performed in two localization test beds, one at the Vienna University of Technology and the second at the Hong Kong Polytechnic University. First test showed that the trajectory of a moving user could be obtained with a standard deviation of about ${\pm}$ 3 m.

  • PDF

A Design of Sign-magnitude based Multi-mode LDPC Decoder for WiMAX (Sign-magnitude 수체계 기반의 WiMAX용 다중모드 LDPC 복호기 설계)

  • Seo, Jin-Ho;Park, Hae-Won;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.11
    • /
    • pp.2465-2473
    • /
    • 2011
  • This paper describes a circuit-level optimization of DFU(decoding function unit) for LDPC decoder which is used in wireless communication systems including WiMAX and WLAN. A new design of DFU based on sign-magnitude arithmetic instead of two's complement arithmetic is proposed, resulting in 18% reduction of gate count for 96 DFUs array used in mobile WiMAX LDPC decoder. A multi-mode LDPC decoder for mobile WiMAX standard is designed using the proposed DFU. The LDPC decoder synthesized using a 0.18-${\mu}m$ CMOS cell library with 50 MHz clock has 268,870 gates and 71,424 bits RAM, and it is verified by FPGA implementation.

The Wireless Monitoring System of Respiration Signal (호흡신호 무선 통신 시스템 개발)

  • Son, Byoung-Hee;Jang, Jong-Chan;Yang, Hyo-Sik;Cha, Eun-Jong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.3
    • /
    • pp.157-162
    • /
    • 2011
  • This study is about implementing wireless transferring system in pre-hospital cardiopulmonary resuscitation(CPR). Also, this study includes monitoring based feedback between patient and hospital to increase the survival rate of emergency patient by developing the performance of cardiopulmonary resuscitation in pre-hospital. It minimizes the loss of flow rate or gastric inflation through the space between the airway and the esophagus, which enables the inspiration-expiration rate to be measured more precisely. Due to these reasons this study applied ET insertion based respiratory sensor to measure flow rate. The main indices of artificial ventilation are justified from minute respiration(V), end-tidal $CO_2(E_TCO_2)$, and tracheal pressure($P_{tr}$). The simulation is performed to verify the bandwidth and delay time of transport network for in-hospital monitoring even as transporting images and voice information simultaneously. The total bandwidth is 815 kbps, and WLAN (IEEE 802.11x) is used as communication protocol. The network load is under 1.5% and the transmit delay time is measured under 0.3 seconds.

A Distributed Dynamic Address Assignment for Tactical Mobile Ad-hoc Networks (전술 MANET에서 그룹 단위 분산된 동적 주소 할당 기법)

  • Park, Mun-Young;Lee, Jong-Kwan;Baek, Ho-Ki;Kim, Du-Hwan;Lim, Jae-Sung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.327-335
    • /
    • 2014
  • In this paper, we propose a group distributed dynamic address assignment scheme suitable for tactical mobile ad hoc networks(MANET). Efficient address assignment is an important issue in the MANET because a node may frequently leave the current network and join another network owing to the mobility of the node. The conventional schemes do not consider the features of the tactical networks: existence of a leader node and network activity on a group basis. Thus, they may not be suitable for military operations. In our proposed scheme, called grouped units dynamic address assignment protocol(G-DAAP), a leader node maintains the address information for the members in the network and any of the nodes can exploit the information for the assignment or request of the IP address by a simple message exchange procedure. This leads to fast address assignment with small overheads. In addition, G-DAAP based on the modified IEEE 802.11e Enhanced Distributed Channel Access(EDCA) can assign addresses more quickly. We describe the delay performance of the G-DAAP and compare it with conventional schemes by numerical analysis and computer simulations. The results show that the G-DAAP significantly improves the delay performance as compared with the conventional schemes.

An IPv6 based Fast Handover Deployment Scheme for WiBro Networks (광대역 무선 인터넷 망에서 IPv6 기반의 고속 핸드오버 도입을 위한 방안)

  • Shim, Min-Sik;Kim, Hwa-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.11A
    • /
    • pp.1101-1112
    • /
    • 2006
  • With the recent growth in demand for high-data rate multimedia services in the wireless environments, the Mobile Broadband Wireless Access (MBWA) technologies, such as WiBro (Wireless Broadband internet) system, are gradually coming into the spotlight. Unlike the conventional mobile communication networks based on cellular system, the WiBro system basically consists of IP based backbone networks that will be ultimately deployed by Ipv6 (IP version six) based backbone networks according to the All-IP trend for the network evolution. In such wireless mobile environments, it is needed to support the mobility management protocol on network layer as well as physical layer and Medium Access Control (MAC) layer in WiBro system. Accordingly, in this paper, we propose a fast handover scheme for improving the handover performance in IPv6 based WiBro system and show that the proposed scheme achieves loss-free and low handover latency during inter-subnet movement of the mobile stations through the simulation.

Frequency-Code Domain Contention in Multi-antenna Multicarrier Wireless Networks

  • Lv, Shaohe;Zhang, Yiwei;Li, Wen;Lu, Yong;Dong, Xuan;Wang, Xiaodong;Zhou, Xingming
    • Journal of Communications and Networks
    • /
    • v.18 no.2
    • /
    • pp.218-226
    • /
    • 2016
  • Coordination among users is an inevitable but time-consuming operation in wireless networks. It severely limit the system performance when the data rate is high. We present FC-MAC, a novel MAC protocol that can complete a contention within one contention slot over a joint frequency-code domain. When a node takes part in the contention, it generates randomly a contention vector (CV), which is a binary sequence of length equal to the number of available orthogonal frequency division multiplexing (OFDM) subcarriers. In FC-MAC, different user is assigned with a distinct signature (i.e., PN sequence). A node sends the signature at specific subcarriers and uses the sequence of the ON/OFF states of all subcarriers to indicate the chosen CV. Meanwhile, every node uses the redundant antennas to detect the CVs of other nodes. The node with the minimum CV becomes the winner. The experimental results show that, the collision probability of FC-MAC is as low as 0.05% when the network has 100 nodes. In comparison with IEEE 802.11, contention time is reduced by 50-80% and the throughput gain is up to 200%.

A Buffer Management Algorithm based on the GOP Pattern and the Importance of each Frame to Provide QoS for Streaming Services in WLAN (WLAN에서 스트리밍 서비스이 QoS를 제공하기 위한 GOP 패턴 및 프레임 중요도에 따른 버퍼 관리 기술)

  • Kim, Jae-Hyun;Lee, Hyun-Jin;Lee, Kyu-Hwan;Roh, Byeong-Hee
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.372-375
    • /
    • 2008
  • IEEE 802.11e standardized the EDCA mechanism to support the priority based QoS. And the virtual collision handler schedules the transmission time of each MAC frame using the internal back-off window according to the access category(AC). This can provides the differentiated QoS to real-time services at the medium traffic load condition. However, the transmission delay of MAC frame for real-time services may be increased as the traffic load of best effort service increases. It becomes more critical when the real-time service uses a compressed mode video codec such as moving picture experts group(MPEG) 4 codec. That is because each frame has the different importance. That is, the I-frame has more information as compared with the P- and the B-frame. In this paper, we proposed a buffer management algorithm based on the frame importance and the delay bound. The proposed algorithm is consisted of the traffic regulator based on the dual token bucket algorithm and the active queue management algorithm. The traffic regulator reduces the transmission rate of lower AC until that the virtual collision handler can transmit an I-frame. And the active queue management discards frame based on the importance of each frame and the delay bound of head of line(HoL) frame when the channel resource is insufficient.

  • PDF