• Title/Summary/Keyword: IEEE802

Search Result 2,718, Processing Time 0.028 seconds

Low-power FFT/IFFT Processor for Wireless LAN Modem (무선 랜 모뎀용 저전력 FFT/IFFT프로세서 설계)

  • Shin Kyung-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.11A
    • /
    • pp.1263-1270
    • /
    • 2004
  • A low-power 64-point FFT/IFFT processor core is designed, which is an essential block in OFDM-based wireless LAM modems. The radix-2/418 DIF (Decimation-ln-Frequency) FFT algorithm is implemented using R2SDF (Radix-2 Single-path Delay Feedback) structure. Some design techniques for low-power implementation are considered from algorithm level to circuit level. Based on the analysis on infernal data flow, some unnecessary switching activities have been eliminated to minimize power dissipation. In circuit level, constant multipliers and complex-number multiplier in data-path are designed using truncation structure to reduce gate counts and power dissipation. The 64-point FFT/IFFT core designed in Verilog-HDL has about 28,100 gates, and timing simulation results using gate-level netlist with extracted SDF data show that it can safely operate up to 50-MHz@2.5-V, resulting that a 64-point FFT/IFFT can be computed every 1.3-${\mu}\textrm{s}$. The functionality of the core was fully verified by FPGA implementation using various test vectors. The average SQNR of over 50-dB is achieved, and the average power consumption is about 69.3-mW with 50-MHz@2.5-V.

An Energy Efficient Transmission Scheme based on Cross-Layer for Wired and Wireless Networks (유.무선 혼합망에서 Cross-Layer기반의 에너지 효율적인 전송 기법)

  • Kim, Jae-Hoon;Chung, Kwang-Sue
    • Journal of KIISE:Information Networking
    • /
    • v.34 no.6
    • /
    • pp.435-445
    • /
    • 2007
  • Snoop protocol is one of the efficient schemes to compensate TCP packet loss and enhance TCP throughput in wired-cum-wireless networks. However, Snoop protocol has a problem: it cannot perform local retransmission efficiently under the bursty-error prone wireless link. To solve this problem, SACK-Aware-Snoop and SNACK mechanism have been proposed. These approaches improve the performance by using SACK option field between base station and mobile host. However in the wireless channel with high packet loss rate, SACK-Aware-Snoop and SNACK mechanism do not work well because of two reason: (a) end-to-end performance is degraded because duplicate ACKs themself can be lost in the presence of bursty error, (b) energy of mobile device and bandwidth utilization in the wireless link are wasted unnecessarily because of SACK option field in the wireless link. In this paper, we propose a new local retransmission scheme based on Cross-layer approach, called Cross-layer Snoop(C-Snoop) protocol, to solve the limitation of previous localized link layer schemes. C-Snoop protocol includes caching lost TCP data and performing local retransmission based on a few policies dealing with MAC-layer's timeout and local retransmission timeout. From the simulation result, we could see more improved TCP throughput and energy efficiency than previous mechanisms.

Vehicle-to-Vehicle Broadcast Protocols Based on Wireless Multi-hop Communication (무선 멀티 홉 통신 기반의 차량간 브로드캐스트 프로토콜)

  • Han, Yong-Hyun;Lee, Hyuk-Joon;Choi, Yong-Hoon;Chung, Young-Uk
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.4
    • /
    • pp.53-64
    • /
    • 2009
  • Inter-vehicular communication that propagates information without infrastructures has drawn a lot of interest. However, it is difficult to apply conventional ad-hoc routing protocols directly in inter-vehicular communication due to frequent changes in the network topology caused by high mobility of the vehicles. MMFP(Multi-hop MAC Forwarding) is a unicast forwarding protocol that transport packets based on the reachability information instead of path selection or position information. However, delivering public safety messages informing road conditions such as collision, obstacles and fog through inter-vehicular communication requires broadcast rather than unicast since these messages contain information valuable to most drivers within a close proximity. Flooding is one of the simplest methods for multi-hop broadcast, but it suffers from reduced packet delivery-ratio and high transmission delay due to an excessive number of duplicated packets. This paper presents two multi-hop broadcast protocols for inter-vehicular communication that extend the MMFP. UMHB(Unreliable Multi-Hop Broadcast) mitigates the duplicated packets of MMFP by limiting the number of nodes to rebroadcast packets. UMHB, however, still suffers from low delivery ratio. RMHB(Reliable Multi-Hop Broadcast) uses acknowledgement and retransmission in order to improve the reliability of UMHB at the cost of increase in transmission delay, which we show through simulation is within an acceptable range for collision avoidance application.

  • PDF

Mutual Exclusion based Localization Technique in Mobile Wireless Sensor Networks (이동 무선 센서 네트워크에서 상호배제 기반 위치인식 기법)

  • Lee, Joa-Hyoung;Lim, Dong-Sun;Jung, In-Bum
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.6
    • /
    • pp.1493-1504
    • /
    • 2010
  • The localization service which provides the location information of mobile user, is one of important service provided by sensor network. Many methods to obtain the location information of mobile user have been proposed. However, these methods were developed for only one mobile user so that it is hard to extend for multiple mobile users. If multiple mobile users start the localization process concurrently, there could be interference of beacon or ultrasound that each mobile user transmits. In the paper, we propose LME, the localization technique for multiple mobile nodes in mobile wireless sensor networks. In LME, collision of localization between sensor nodes is prevented by forcing the mobile node to get the permission of localization from anchor nodes. For this, we use CTS packet type for localization initiation by mobile node and RTS packet type for localization grant by anchor node. NTS packet type is uevento reject localization by anchor node for interference avoidance.nghe experimental result shows that the number of interference between nodes are increased in proportion to the number of mobile nodes and LME provides efficient localization.

Development of IoT-based real-time Toxic Chemical management System (IoT 기반의 실시간 유해 화학물 관리 시스템 개발)

  • Kang, Min-Soo;Ihm, Chunhwa;Jung, Yong-Gyu;Lee, Minho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.5
    • /
    • pp.143-149
    • /
    • 2016
  • Recent accidents caused by toxic chemicals and the social problems caused by frequent. As of 2010, there are more than 100,000 types of deadly toxic chemicals being distributed throughout Korea, and severely intoxicated patients along with an enormous number of patients can be induced at the time of an accident involving deadly toxic chemicals. Internationally, the seriousness of large-scale disasters due to a NBC disaster (nuclear, biologic and chemical disaster) is being highlighted as well. So, we obtain the information of the RFID tag attached to a glass bottle with containing the toxic chemical to transfer the data to the smart device has been studied a system that can monitor the status of the toxic chemical in real time. The proposed system is the information was sent to the main system using a zigbee communication by recognizing the tag vial containing the toxic chemical with the 13.56MHz bandwidths good permeability. User may check the information in real time by utilizing the smart device. However, the error of the system for managing the toxic chemical generates a result that can not be predicted. Failure of the system was detecting the error by using a comparator as this can cause an error. And the detected error proposed a duplex system so that they do not affect the overall system.

System Performance Improvement of IEEE 802.15.3a By Using Time Slot Synchronization In MAC Layer (UWB MAC의 Time Slot 동기를 통한 시스템 성능 개선)

  • Oh Dae-Gun;Chong Jong-Wha
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.3 s.345
    • /
    • pp.84-94
    • /
    • 2006
  • In this paper, we propose the algorithm to reduce guard time of UWB MAC time slot for throughput gain. In the proposed draft by multiband ofdm alliance (MBOA), Guard time of each medium access slot (MAS) is composed of shortest inter-frame space (SIFS) and MaxDrift which is the time caused by maximum frequency offset among devices. In this paper, to reduceguard time means that we nearly eliminate MaxDrift term from guard time. Each device of a piconet computes relative frequency offset from the device initiating piconet using periodically consecutive transferred beacon frames. Each device add or subtract the calculated relative frequency offset to the estimated each MAS starting point in order to synchronize with calculated MAS starting point of the device initiating piconet. According to verification of simulations, if the frequency offset estimator is implemented with 8 decimal bit, the ratio of the wasted time to Superframe is always less than 0.0001.

On the Optimal Selection of Wireless Access in Interoperating Heterogeneous Wireless Networks (3G/WLAN/휴대인터넷 연동상황을 고려한 사용자의 최적 무선접속서비스 선택방법에 대한 연구)

  • Cho Geun-Ho;Choe Jin-Woo;Jun Sung-Ik;Kim Young-Sae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.5B
    • /
    • pp.456-477
    • /
    • 2006
  • Due to advances in wireless communication technology and increasing demand for various types of wireless access, cellular, WLAN, and portable internet(such as WiBro and IEEE 802.16) systems are likely to be integrated into a unified wireless access system. This expectation premises the availability of multi-mode handsets and cooperative interworking of heterogenous wireless access networks allied by roaming contracts. Under such environments, a user may lie in the situation where more than one wireless accesses are available at his/her location, and he/she will want to choose the 'best' access among them. In this paper, we define the 'best' access(es) as the access(es) that charges minimum cost while fulfilling the required QoS of wireless access, and address the problem of choosing the optimal set of accesses theoretically by introducing a graph representation of service environment. Two optimal selection algorithms are proposed, which individually consider cases where single or multiple wireless access can be supported by multi-mode handsets.

mSFP: Multicasting-based Inter-Domain Mobility Management Scheme in Sensor-based Fast Proxy Mobile IPv6 Networks (센서기반 FPMIPv6 네트워크에서 멀티캐스팅 기반의 도메인간 이동성관리 기법)

  • Jang, Hana;Jeong, Jongpil
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.1
    • /
    • pp.15-26
    • /
    • 2013
  • IP-based Wireless Sensor Networks (IP-WSNs) are gaining importance for their broad range of applications in health-care, home automation, environmental monitoring, industrial control, vehicle telematics and agricultural monitoring. In all these applications, mobility in the sensor network with special attention to energy efficiency is a major issue to be addressed. Because of the energy inefficiency of networks-based mobility management protocols can be supported in IP-WSN. In this paper we propose a network based mobility supported IP-WSN protocol called Multicasting-based inter-Domain Mobility Management Scheme in Sensor-based Fast Proxy Mobile IPv6 Networks (mSFP). Based on [8,20], We present its network architecture and evaluate its performance by considering the signaling and mobility cost. Our analysis shows that the proposed scheme reduces the signaling cost, total cost, and mobility cost. With respect to the number of IP-WSN nodes, the proposed scheme reduces the signaling cost by 7% and the total cost by 3%. With respect to the number of hops, the proposed scheme reduces the signaling cost by 6.9%, the total cost by 2.5%, and the mobility cost by 1.5%. With respect to the number of IP-WSN nodes, the proposed scheme reduces the mobility cost by 1.6%.

Design of a Dual-band Snowflake-Shaped Microstrip patch Antenna With Short-pin For 5.2/5.8 GHz WLAN System (WLAN System을 위한 Short-Pin을 갖는 Snowflake 모양의 Dual-band(5.2/5.8 GBz) 마이크로스트립 패치 안테나 설계 및 제작)

  • Song, Jun-Sung;Choi, Sun-Ho;Lee, Hwa-Choon;Kwak, Kyung-Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.4A
    • /
    • pp.324-329
    • /
    • 2009
  • In this paper, a novel Snowflake-shaped microstrip patch antenna for application in the WLAN(5.2/5.8GHz) band is designed and fabricated. The size of antenna is $21.2{\times}16mm^2$ and substrate is used Taconic-RF30. To obtain sufficient bandwidth in Return loss <-10dB and dual resonance characteristic, the Short-pin is inserted on the patch and the coaxial probe source is used. The measured results of fabricated antenna show 220MHz and 135MHz bandwidth in Return loss <-10dB referenced to the WLAN(5.2/5.8GHz) band. The measured antenna gain is $4.7{\sim}6.9dBi$ in the WLAN(5.2/5.8GHz) band. The experimental 3-dB beam width in I-plane and H-plane are $73.2^{\circ}/82.75^{\circ}$ for 5.1500Hz, $74.56^{\circ}/83.63^{\circ}$ for 5.3500Hz, and $86.24^{\circ}/85.15^{\circ}$ for 5.7850Hz, respectively.

Low-power 6LoWPAN Protocol Design (저 전력 6LoWPAN 프로토콜 설계)

  • Kim, Chang-Hoon;Kim, Il-Hyu;Cha, Jung-Woo;Nam, In-Gil;Lee, Chae-Wook
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.4
    • /
    • pp.274-280
    • /
    • 2011
  • Due to their rapid growth and new paradigm applications, wireless sensor networks(WSNs) are morphing into low power personal area networks(LoWPANs), which are envisioned to grow radically. The fragmentation and reassembly of IP data packet is one of the most important function in the 6LoWPAN based communication between Internet and wireless sensor network. However, since the 6LoWPAN data unit size is 102 byte for IPv6 MTU size is 1200 byte, it increases the number of fragmentation and reassembly. In order to reduce the number of fragmentation and reassembly, this paper presents a new scheme that can be applicable to 6LoWPAN. When a fragmented packet header is constructed, we can have more space for data. This is because we use 8-bits routing table ill instead of 16-bits or 54-bits MAC address to decide the destination node. Analysis shows that our design has roughly 7% or 22% less transmission number of fragmented packets, depending on MAC address size(16-bits or 54-bits), compared with the previously proposed scheme in RFC4944. The reduced fragmented packet transmission means a low power consumption since the packet transmission is the very high power function in wireless sensor networks. Therefore the presented fragmented transmission scheme is well suited for low-power wireless sensor networks.