DOI QR코드

DOI QR Code

mSFP: Multicasting-based Inter-Domain Mobility Management Scheme in Sensor-based Fast Proxy Mobile IPv6 Networks

센서기반 FPMIPv6 네트워크에서 멀티캐스팅 기반의 도메인간 이동성관리 기법

  • 장하나 (성균관대학교 정보통신대학원) ;
  • 정종필 (성균관대학교 산학협력단)
  • Received : 2012.06.26
  • Accepted : 2012.11.30
  • Published : 2013.01.31

Abstract

IP-based Wireless Sensor Networks (IP-WSNs) are gaining importance for their broad range of applications in health-care, home automation, environmental monitoring, industrial control, vehicle telematics and agricultural monitoring. In all these applications, mobility in the sensor network with special attention to energy efficiency is a major issue to be addressed. Because of the energy inefficiency of networks-based mobility management protocols can be supported in IP-WSN. In this paper we propose a network based mobility supported IP-WSN protocol called Multicasting-based inter-Domain Mobility Management Scheme in Sensor-based Fast Proxy Mobile IPv6 Networks (mSFP). Based on [8,20], We present its network architecture and evaluate its performance by considering the signaling and mobility cost. Our analysis shows that the proposed scheme reduces the signaling cost, total cost, and mobility cost. With respect to the number of IP-WSN nodes, the proposed scheme reduces the signaling cost by 7% and the total cost by 3%. With respect to the number of hops, the proposed scheme reduces the signaling cost by 6.9%, the total cost by 2.5%, and the mobility cost by 1.5%. With respect to the number of IP-WSN nodes, the proposed scheme reduces the mobility cost by 1.6%.

IP기반 무선 센서 네트워크(IP-WSN)는 의료, 주택 자동화, 환경 모니터링, 산업용 제어, 차량 텔레매틱스 및 농업 모니터링 등 광범위하게 적용되고 있다. 이러한 적용은 에너지 효율과 함께 센서의 이동성이 중요한 문제로 다루어진다. 에너지 비효율로 인해 네트워크 기반의 이동성관리 프로토콜은 IP-WSN에서 지원될 수 있다. 본 논문에서는 IP-WSN 프로토콜을 지원하는 멀티캐스팅 기반의 빠른 이동성관리 기법(mSFP)을 제안한다. 네트워크 구조와 시그널링 비용, 이동성 비용 등을 고려한 성능분석을 수행하였고[8,20], 분석 결과 PMIPv6와 SPMIPv6에 비하여 mSFP의 시그널링 비용, 전체 시그널링 비용, 이동성 비용이 모두 감소되었다. IP-WSN 노드의 수 측면에서 mSFP의 시그널링 비용은 7%, 전체 시그널링 비용은 3% 더 감소되었다. 홉의 수 측면에서 mSFP의 시그널링 비용은 6.9%, 전체 시그널링 비용은 2.5% 더 감소되었다. IP-WSN 노드의 수 측면에서 이동성 비용은 1.6%, 홉의 수 측면에서 이동성 비용은 1.5% 더 감소되었다.

Keywords

References

  1. lan F, Akyildiz, and Weilian Su, "A survey on sensor networks," IEEE communication Magazine, pp.102-114, August, 2002.
  2. Kemal Akkaya, Mohamed Tounis, "A survey on routing protocols for wireless sensor networks," Ad hoc Network, pp.325-349, March, 2005.
  3. Montenegro G., Kushalnagar N, and Hui J W, "Transmission of IPv6 Packets over IEEE 802.15.4 Networks," IETF RFC 4944, September, 2007.
  4. Kushalnagar N, Montenegro G, and Schumacher C, "IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs)," IETF RFC 4919, August, 2007.
  5. Zach, S.; Carsten, B. 6LoWPAN: The wireless Embeded Internet, David Hutchios, Serge Fdida, Joe Sventek; John Wiley & Sons Ltd: Chichester, West Sussex, UK, 2009.
  6. Kim E, Kaspar D, and Chevrollier N, "Design and Application Spaces for 6LoWPANs," IETF internet-Draft, July, 2009.
  7. Kong K S, Lee W, and Han Y H, "Mobility Management for Ali-IP mobile networks: mobile IPv6 vs. Proxy mobile IPv6," IEEE Wirel Commun, pp.36-45, July, 2008
  8. Motaharul Islam, Eui Nam Huh, "Sensor Proxy Mobile(SPMIPv6)-A Novel Scheme for Mobility Supported IP-WSNs," Sensor, pp.1865-1887, November, 2011.
  9. Gundavelli S, Leung K, Devarapalli V, Chowdhury K, and Patil B, "Proxy Mobile IPv6," IETF RFC 5213, August, 2008.
  10. Chalmers R.C, Almeroth K C, "A mobility gateway for small-device networks," In Proceedings of Second IEEE Annual Conference on Pervasive Computing and Communications Washington DC USA, June, 2004.
  11. Kim J H, Hong C S, and Taeshik S, "A Lightweight NEMO protocol to support 6LoWPAN," ETRI Journal, pp.685-695, October, 2008.
  12. Istepanian R, Jovanov E, and Zhang Y, "Guest Editorial Introduction to the Special Section on M-Health: Beyond Seamless Mobility and Global Wireless Health-care connectivity," IEEE Transactions on Information Technology In Biomedicine, pp.405-414, 2004.
  13. Ni X, Shi W, and Ni, "Design of Micro Mobility Support in Bluetooth Sensor Networks," In IEEE International Conference on Industrial Informatics, pp.150-154, August, 2006.
  14. Akyildiz I F, Lin Y B and Lai W R, "A new random walk model for PCS networks," IEEE Journal on selected areas in communications, pp.1254-1259, July, 2000.
  15. Ching K H, Shenoy N A, "2D Random walk mobility model for location management studies in wireless network" IEEE Transactions On vehicular Technology, pp.413-424, March, 2004.
  16. Heinzelman W R, Chandrakasna A, and Balakrishnan H, "Energy-Efficient Communication Protocol for Wireless Micro sensor Networks," In Proceedings of the 33rd Annual Hawaii international Conference on System Sciences, pp.8020-8030, January, 2000.
  17. Pathan A S K, Hong C S, "SERP: secure energy-efficient routing protocol for densely deployed wireless sensor networks," Ann. Telecommun, pp.529-541, July, 2008.
  18. Razzaque M A, Hong C S, "Analysis of energy-tax for multipath routing in wireless sensor networks," Ann. Telecommun, pp.117-127, May, 2009.
  19. Dhanajay S, Lee H J, Chung W Y, "An Energy Consumption Technique for Global Healthcare Monitoring Applications," In Proceedings of International Conference on Information Sciences, pp.539-542, November, 2009.
  20. Md. Motaharul Islam and Eui-Nam Huh, "A Novel Addressing Scheme for PMIPv6 Based Global IP-WSNs," Sensors, pp.8430-8455, November, 2011.
  21. Geert Heijenk and Mortaza S. Bargh, "Reducing Handover Latency in future IP-based Wireless Networks: Fast Proxy Mobile IPv6," eMobility, pp.79-92, May, 2008.
  22. Sewon Yoo and Jongpil Jeong, "Analytical Approach of Fast Inter-Domain Handover Scheme in Proxy Mobile IPv6 Networks Multicasting Support," KISTI, pp.153-166, April, 2012. https://doi.org/10.3745/KIPSTC.2012.19C.2.153