• Title/Summary/Keyword: IEEE 802.15.4a channel

Search Result 128, Processing Time 0.036 seconds

Channel Searching Method of IEEE 802.15.4 Nodes for Avoiding WiFi Traffic Interference (WiFi 트래픽 간섭을 피하기 위한 IEEE 802.15.4 노드의 채널탐색방법)

  • Song, Myong Lyol
    • Journal of Internet Computing and Services
    • /
    • v.15 no.2
    • /
    • pp.19-31
    • /
    • 2014
  • In this paper, a parallel backoff delay procedure on multiple IEEE 802.15.4 channels and a channel searching method considering the frequency spectrum of WiFi traffic are studied for IEEE 802.15.4 nodes to avoid the interference from WiFi traffic. In order to search the channels being occupied by WiFi traffic, we analyzed the methods measuring the powers of adjacent channels simultaneously, checking the duration of measured power levels greater than a threshold, and finding the same periodicity of sampled RSSI data as the beacon frame by signal processing. In an wireless channel overlapped with IEEE 802.11 network, the operation of CSMA-CA algorithm for IEEE 802.15.4 nodes is explained. A method to execute a parallel backoff procedure on multiples IEEE 802.15.4 channels by an IEEE 802.15.4 device is proposed with the description of its algorithm. When we analyze the data measured by the experimental system implemented with the proposed method, it is observed that medium access delay times increase at the same time in the associated IEEE 802.15.4 channels that are adjacent each other during the generation of WiFi traffic. A channel evaluation function to decide the interference from other traffic on an IEEE 802.15.4 channel is defined. A channel searching method considering the channel evaluations on the adjacent channels together is proposed in order to search the IEEE 802.15.4 channels interfered by WiFi, and the experimental results show that it correctly finds the channels interfered by WiFi traffic.

Implementation of IEEE 802.15.4 Channel Analyzer for Evaluating WiFi Interference (WiFi의 간섭을 평가하기 위한 IEEE 802.15.4 채널분석기의 구현)

  • Song, Myong-Lyol;Jin, Hyun-Joon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.2
    • /
    • pp.81-88
    • /
    • 2014
  • In this paper, an implementation of concurrent backoff delay process on a single chip with IEEE 802.15.4 hardware and 8051 processor core that can be used for analyzing the interference on IEEE 802.15.4 channels due to WiFi traffics is studied. The backoff delay process of IEEE 802.15.4 CSMA-CA algorithm is explained. The characteristics of random number generator, timer, and CCA register included in the single chip are described with their control procedure in order to implement the process. A concurrent backoff delay process to evaluate multiple IEEE 802.15.4 channels is proposed, and a method to service the associated tasks at sequentially ordered backoff delay events occurring on the channels is explained. For the implementation of the concurrent backoff delay process on a single chip IEEE 802.15.4 hardware, the elements for the single channel backoff delay process and their control procedure are used to be extended to multiple channels with little modification. The medium access delay on each channel, which is available after execution of the concurrent backoff delay process, is displayed on the LCD of an IEEE 802.15.4 channel analyzer. The experimental results show that we can easily identify the interference on IEEE 802.15.4 channels caused by WiFi traffics in comparison with the way displaying measured channel powers.

Frame Transmission and Channel Changing Methods of IEEE 802.15.4 Nodes in WiFi Traffic Interference Environment (WiFi 트래픽의 간섭환경에서 IEEE 802.15.4 노드의 프레임 전송 및 채널변경 방법)

  • Song, Myong Lyol
    • Journal of Internet Computing and Services
    • /
    • v.15 no.1
    • /
    • pp.179-191
    • /
    • 2014
  • In this paper, a frame transmission method to make IEEE 802.15.4 nodes run at a new channel and its characteristics are studied when they experience difficulties in transmission of frames due to WiFi traffic. The researches on evaluating the interference from WiFi traffic, searching for a new channel with little interference or not, and changing the operating channel are analyzed. In an wireless channel overlapped with IEEE 802.11 network, the transmission delay of IEEE 802.15.4 frames, the collision of frames in sending IEEE 802.15.4 frames without applying CSMA-CA algorithm, and the operation of IEEE 802.11 nodes are explained. A transmission method of frames including frame-formated code blocks in order to use the rest part of collided IEEE 802.15.4 frame is proposed. In the experiments of the proposed method, it is observed that frame-formated code blocks are synchronized and received by receivers in case of collision, and then the collided positions in IEEE 802.15.4 frame and the characteristics of frame reception rate are analyzed. The experimental results show that the performance of the proposed method is improved in comparison to an existing method when we measure the time taken to send a channel change command and get the response in order to avoid the interference from WiFi traffic.

Coexistence Mechanism between IEEE 802.15.4 and IEEE 802.11 : ACROS (IEEE 802.15.4 와 IEEE 802.11의 공존 방법 : ACROS)

  • Shin, S.Y.;Lee, J.W.;Kwon, W.H.;Shin, Y.H.;Kim, Y.H.;Kim, J.J.;Kim, Yu-Shin
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2005.08a
    • /
    • pp.74-84
    • /
    • 2005
  • In this paper, a new coexistence mechanism between IEEE 802.15.4 and IEEE 802.11, ACROS (Active Channel Reservation for coexistence), is proposed. The key idea of ACROS is to reserve the channel for IEEE 802.15.4 transmission. During the reservation, IEEE 802.11 transmissions cannot be occurred. Request-to-send/clear-to-send mechanism of IEEE 802.11 is used to reserve channel. The proposed ACROS mechanism is implemented into PC based prototype. By the experiments, the $e{\pm}ciency$ of ACROS is proved.

  • PDF

Multi-channel QoS scheduling algorithm in IEEE 802.15.4e (IEEE 802.15.4e 멀티 채널 QoS 스케줄링 알고리즘)

  • Wu, Hyuk;Kim, Hak-Kyu;Lee, Dong-Jun;Kang, Ho-Yong
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.5
    • /
    • pp.764-773
    • /
    • 2011
  • IEEE 802.15.4 is a standard for LWPAN based on TDMA. IEEE 802.15.4 has not been used widely because of restrictions on the QoS, scalability, and reliability. IEEE 802.15.4 utilizes GTS for one-hop QoS transmission. However GTS is not an effective method to satisfy QoS in multi-hop environments. Currently IEEE 802.15.4e, an extended version of IEEE 802.15.4 MAC sub-layer, is being developed to satisfy more diverse performance requirements than IEEE 802.15.4. IEEE 802.15.4e provides muti-hop QoS transmission functionality and uses multiple frequency channels. In this paper, a multi-channel TDMA scheduling scheme is proposed to satisfy end-to-end transmission delay in IEEE 802.15.4e. The performance of the proposed scheme is evaluated using simulation.

On the Impact of Channel Sensing Methods to IEEE 802.15.4 Performances under IEEE 802.11b Interference

  • Shin, Soo-Young;Park, Hong-Seong
    • Journal of Communications and Networks
    • /
    • v.10 no.3
    • /
    • pp.301-307
    • /
    • 2008
  • In this paper, the impact of channel sensing methods to IEEE 802.15.4 under the interference of IEEE 802.11b are analyzed. Two different channel sensing methods, energy detection and carrier sense, are considered. An average transmission delay, a throughput, and a power drain rate are used as performance measures. Those performance measures of IEEE 802.15.4 under the interference of IEEE 802.11b are analyzed mathematically. The simulation results are shown to validate the analytic results.

Enhanced Segmentized Clear Channel Assessment Method for IEEE 802.15.4 Network (IEEE 802.15.4 Network의 전송효율 향상을 위한 Enhanced Semgentized Clear Channel Assessment 기법)

  • Son, Kyou Jung;Chang, Tae Gyu
    • Journal of IKEEE
    • /
    • v.20 no.3
    • /
    • pp.322-325
    • /
    • 2016
  • This paper proposed Enhanced Segmentized Clear Channel Assesment(ESCCA) for the IEEE 802.15.4 networks. This method divides original CCA into two groups to check precise channel status and perform additional CCA to increase throughput performance. Through the proposed method, the device can access the channel more often, so the transmission efficiency of the IEEE 802.15.4 network improves. To confirm the feasibility and usability of the proposed method, computer simulation has been performed. In the simulation, a star topology with one coordinator and a lot of devices is considered and the traffic flows are all one way, with the communication directed to the coordinator. Simulation results_ show the proposed method is improving maximum 10 kbps of throughput and decreasing maximum 15 of the average number of total CCA than IEEE 802.15.4 CCA method.

Scheduling Scheme and Performance Analysis of IEEE802.15.4e TSCH (IEEE802.15.4e TSCH의 스케줄링 방식 및 성능분석)

  • Park, Mi-Ryong;Kim, Dongwon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.5
    • /
    • pp.43-49
    • /
    • 2017
  • In this paper, we propose the scheduling scheme of IEEE802.15.4e TSCH which is not specified in standard specification. The proposed scheme schedules the link by cooperating among the devices. A new device scans EBs(Enhanced Beacons) from network. An advertiser device broadcasts an enhanced beacon frame including links information on allocated channel offset and time-slots, and a new device can determine its own channel offset and time-slot. It's performance on maximum throughput and minimum delay is evaluated by comparing the proposed approach with a typical single channel IEEE802.15.4.

Contiki-NG-based IEEE 802.15.4 TSCH Throughput Evaluation (Contiki-NG 기반 IEEE 802.15.4 TSCH 처리량 분석)

  • Lee, Sol-Bee;Kim, Eui-Jik;Lim, Yongseok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.577-578
    • /
    • 2018
  • In this paper, we evaluate the throughput performance of IEEE 802.15.4 Time Slotted Channel Hopping (TSCH) tree network using Contiki-NG operating system. We build a virtual simulation environment to compare the throughput performance of various IEEE 802.15.4 TSCH networks according to the changes in the number of nodes and the hop counts. The simulation results show that the throughput increases as the number of nodes increase while it decreases as the hop counts increase.

  • PDF

A Robust Coherent IR-UWB Channel Estimation Method Against Imperfect Synchronization (동기식 IR-UWB 시스템에서 불완전 동기 환경에 강인한 채널 추정 기법)

  • Hwang, In-Jae;Kim, Jeong-Been;Oh, Wang-Rok;Ahn, Jae-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.3A
    • /
    • pp.205-212
    • /
    • 2009
  • A novel channel estimation scheme is proposed for coherent Impulse Radio Ultra Wideband (IR-UWB) system based on IEEE 802.15.4a specification. By extracting and utilizing the information on the frequency synchronization, the proposed channel estimation algorithm improves the receiver performance even under the restricted number of preamble symbols in IEEE 802.15.4a signal format. Simulation results over the IEEE 802.15.4a channel models show the performance gain with the proposed algorithm compared to ordinary channel estimation method.