• Title/Summary/Keyword: IEEE 802.15.4 network

Search Result 376, Processing Time 0.02 seconds

Lightweight IPsec protocol for IoT communication environments (IoT 통신 환경을 위한 경량 IPsec 프로토콜 연구)

  • Song, In-A;Oh, Jeong-Hyeon;Lee, Doo-Won;Lee, Young-Seok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.1
    • /
    • pp.121-128
    • /
    • 2018
  • Internet of Things architecture connected to the Internet is a technology. However, Many paper research for the lightweight Protocol of IoT Environment. In these Paper excluded secure problem about protocol. So Light weight Protocol has weakness of secure in IoT environment. All of IoT devices need encryption algorithm and authentication message code for certain level of security. However, IoT environment is difficult to using existing security technology. For this reason, Studies for Lightweight IPsec is essential in IoT environment. For Study of Lightweight IPsec, We analyze existing protocols such as IPsec, 6LoWPAN for IEEE 802.15.4 layer and Lightweight IPsec based 6LoWPAN. The result is to be obtained for the lightweight IPsec protocols for IoT environment. This protocol can compatible with Internet network.

Design of a Timing Estimator Algorithm for 2.45GHz LR-WPAM Receiver (2.45GHz LR-WPAN 수신기를 위한 Timing Estimator 알고리즘의 설계)

  • Kang Shin-Woo;Do Joo-Hyun;Park Tha-Joon;Choi Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.3A
    • /
    • pp.282-290
    • /
    • 2006
  • In this paper, we propose an enhanced Timing Estimator algorithm for 2.45GHz LR-WPAN receiver. Because an expensive and highly efficient oscillator can't be used for low-cost implementation, a Timing Estimator algorithm having stable operation in the channel environment with center frequency tolerance of 80 ppm is required. To enhance the robustness to frequency offset and the stability of receiver performance, multiple delay differential filter is adopted. By utilizing the characteristic that the correlation result between the output signal of Multiple delay differential filter and reference signal is restricted on the In-phase part of the correlator output, a coherent detection scheme instead of the typical noncoherent one is adopted for Timing Estimator. The application of the coherent detection scheme is suitable for LR-WPAN receiver aimed at low-cost, low-power, and low-complexity, since it can remove performance degradation due to squaring loss of I/Q squaring operation and decrease implementation complexity. Computer simulation results show that the proposed algorithm achieved performance improvement compared with the differential detection-based noncoherent scheme by 2dB in average.

Design and Implementation of Distributed Parking Space Management Service in Scalable LPWA-Based Networks (대규모 LPWA기반 네트워크에서 분산된 주차 공간 관리서비스의 설계 및 구현)

  • Park, Shinyeol;Jeong, Jongpil;Park, Dongbeom;Park, Byungjun
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.7 no.10
    • /
    • pp.259-268
    • /
    • 2018
  • Due to the development of cities and the increase of vehicles, effective control of parking space management service in cities is needed. However, the existing parking lot management system does not provide limited or convenient service in terms of space and time. In this paper, we propose distributed parking space management service based on large scale LPWA (Low-Power Wide-Area). The parking sensor collects parking space information from the parking lot and is transmitted over a low-power wide network. All parking data is processed and analyzed in the IoT cloud. Through a parking space management service system in all cities, users are given the temporal convenience of determining the parking space and the area efficiency of the parking space.

Disign of Non-coherent Demodulator for LR-WPAN Systems (LR-WPAN 시스템을 위한 비동기 복조 알고리즘 및 하드웨어 구조설계)

  • Lee, Dong-Chan;Jang, Soo-Hyun;Jung, Yun-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.6
    • /
    • pp.705-711
    • /
    • 2013
  • In this paper, we present a low-complexity non-coherent demodulation algorithm and hardware architecture for LR-WPAN systems which can support the variable data rate for various applications. The need for LR-WPAN systems that can support the variable data rate is increasing due to the emergence of various sensor applications. Since the existing symbol based double correlation (SBDC) algorithm requires the increase of complexity to support the variable data rate, we propose the sample based double correlation (SPDC) algorithm which can be implemented without the increase of complexity. The proposed non-coherent demodulator was designed by verilog HDL and implemented with FPGA prototype board.

Low-power 6LoWPAN Protocol Design (저 전력 6LoWPAN 프로토콜 설계)

  • Kim, Chang-Hoon;Kim, Il-Hyu;Cha, Jung-Woo;Nam, In-Gil;Lee, Chae-Wook
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.4
    • /
    • pp.274-280
    • /
    • 2011
  • Due to their rapid growth and new paradigm applications, wireless sensor networks(WSNs) are morphing into low power personal area networks(LoWPANs), which are envisioned to grow radically. The fragmentation and reassembly of IP data packet is one of the most important function in the 6LoWPAN based communication between Internet and wireless sensor network. However, since the 6LoWPAN data unit size is 102 byte for IPv6 MTU size is 1200 byte, it increases the number of fragmentation and reassembly. In order to reduce the number of fragmentation and reassembly, this paper presents a new scheme that can be applicable to 6LoWPAN. When a fragmented packet header is constructed, we can have more space for data. This is because we use 8-bits routing table ill instead of 16-bits or 54-bits MAC address to decide the destination node. Analysis shows that our design has roughly 7% or 22% less transmission number of fragmented packets, depending on MAC address size(16-bits or 54-bits), compared with the previously proposed scheme in RFC4944. The reduced fragmented packet transmission means a low power consumption since the packet transmission is the very high power function in wireless sensor networks. Therefore the presented fragmented transmission scheme is well suited for low-power wireless sensor networks.

A Study On Design of ZigBee Chip Communication Module for Remote Radiation Measurement (원격 방사선 측정을 위한 ZigBee 원칩형 통신 모듈 설계에 대한 연구)

  • Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.552-558
    • /
    • 2014
  • This paper suggests how to design a ZigBee-chip-based communication module to remotely measure radiation level. The suggested communication module consists of two control processors for the chip as generally required to configure a ZigBee system, and one chip module to configure a ZigBee RF device. The ZigBee-chip-based communication module for remote radiation measurement consists of a wireless communication controller; sensor and high-voltage generator; charger and power supply circuit; wired communication part; and RF circuit and antenna. The wireless communication controller is to control wireless communication for ZigBee and to measure radiation level remotely. The sensor and high-voltage generator generates 500 V in two consecutive series to amplify and filter pulses of radiation detected by G-M Tube. The charger and power supply circuit part is to charge lithium-ion battery and supply power to one-chip processors. The wired communication part serves as a RS-485/422 interface to enable USB interface and wired remote communication for interfacing with PC and debugging. RF circuit and antenna applies an RLC passive component for chip antenna to configure BALUN and antenna impedance matching circuit, allowing wireless communication. After configuring the ZigBee-chip-based communication module, tests were conducted to measure radiation level remotely: data were successfully transmitted in 10-meter and 100-meter distances, measuring radiation level in a remote condition. The communication module allows an environment where radiation level can be remotely measured in an economically beneficial way as it not only consumes less electricity but also costs less. By securing linearity of a radiation measuring device and by minimizing the device itself, it is possible to set up an environment where radiation can be measured in a reliable manner, and radiation level is monitored real-time.