• Title/Summary/Keyword: ICP 정합

Search Result 42, Processing Time 0.032 seconds

Development of robot calibration method based on 3D laser scanning system for Off-Line Programming (오프라인 프로그래밍을 위한 3차원 레이저 스캐닝 시스템 기반의 로봇 캘리브레이션 방법 개발)

  • Kim, Hyun-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.16-22
    • /
    • 2019
  • Off-line programming and robot calibration through simulation are essential when setting up a robot in a robot automation production line. In this study, we developed a new robot calibration method to match the CAD data of the production line with the measurement data on the site using 3D scanner. The proposed method calibrates the robot using 3D point cloud data through Iterative Closest Point algorithm. Registration is performed in three steps. First, vertices connected by three planes are extracted from CAD data as feature points for registration. Three planes are reconstructed from the scan point data located around the extracted feature points to generate corresponding feature points. Finally, the transformation matrix is calculated by minimizing the distance between the feature points extracted through the ICP algorithm. As a result of applying the software to the automobile welding robot installation, the proposed method can calibrate the required accuracy to within 1.5mm and effectively shorten the set-up time, which took 5 hours per robot unit, to within 40 minutes. By using the developed system, it is possible to shorten the OLP working time of the car body assembly line, shorten the precision teaching time of the robot, improve the quality of the produced product and minimize the defect rate.

Autonomous Reconstruction of 3D Indoor Environment for Virtual Reality using a Mobile Robot based on the Observation Planning (경로 예측에 기반한 이동로봇을 이용한 가상 현실을 위한 삼차원 실내 환경 모델의 자율 복원에 관한 연구)

  • Moon, Jung-Hyun;You, Bum-Jae;Kim, Hag-Bae;Oh, Sang-Rok
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2774-2776
    • /
    • 2005
  • 본 논문에서는 이동로봇에 삼차원 레이저 스캐너를 장착하여 삼차원 데이터의 수집, 수집된 데이터의 정합, 데이터 수집을 위한 이동로봇의 경로계획 및 장애물 회피주행 등 모든 작업들을 유기적으로 결합시켜 실내 환경에 다한 삼차원 모델을 자율제작하는 시스템을 제안한다. 이를 위해 스캔순서최적화를 통한 빠른 동적 물체 정보의 제거, 계층적 육면체 맵과 기하학적맵을 이용한 최적 경로 예측에 의한 다음 스캐닝 위치의 결정, 오도미터 정보와 명암 정보를 이용해 수정된 ICP 알고리즘을 통한 데이터의 정합을 통하여 이동물체와 관계없는 실내환경에 대한 삼차원 모델의 자율복원 한다.

  • PDF

Robust Matching Algorithm for Optical Images (광학 영상의 강인한 정합 알고리즘)

  • Yang, Han-Jin;Joo, Young-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.3
    • /
    • pp.248-253
    • /
    • 2011
  • This paper proposes the robust matching algorithm for optical images obtained by WSI(White-light Scanning Interferometer) machine. The matching algorithms are divided by two part according to the matching points: algorithm whether the matching points between two images exist or not. Also, after matching the images, we propose the algorithm to smooth the matched image. Finally, we show the effectiveness and feasibility of the proposed method through some experiments.

HK Curvature Descriptor-Based Surface Registration Method Between 3D Measurement Data and CT Data for Patient-to-CT Coordinate Matching of Image-Guided Surgery (영상 유도 수술의 환자 및 CT 데이터 좌표계 정렬을 위한 HK 곡률 기술자 기반 표면 정합 방법)

  • Kwon, Ki-Hoon;Lee, Seung-Hyun;Kim, Min Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.8
    • /
    • pp.597-602
    • /
    • 2016
  • In image guided surgery, a patient registration process is a critical process for the successful operation, which is required to use pre-operative images such as CT and MRI during operation. Though several patient registration methods have been studied, we concentrate on one method that utilizes 3D surface measurement data in this paper. First, a hand-held 3D surface measurement device measures the surface of the patient, and secondly this data is matched with CT or MRI data using optimization algorithms. However, generally used ICP algorithm is very slow without a proper initial location and also suffers from local minimum problem. Usually, this problem is solved by manually providing the proper initial location before performing ICP. But, it has a disadvantage that an experience user has to perform the method and also takes a long time. In this paper, we propose a method that can accurately find the proper initial location automatically. The proposed method finds the proper initial location for ICP by converting 3D data to 2D curvature images and performing image matching. Curvature features are robust to the rotation, translation, and even some deformation. Also, the proposed method is faster than traditional methods because it performs 2D image matching instead of 3D point cloud matching.

Plasma control by tuning network modification in 4MHz ionized-physical vapor deposition (4MHz I-PVD장치에서 정합회로를 이용한 플라즈마 제어)

  • 주정훈
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.1
    • /
    • pp.75-82
    • /
    • 1999
  • Ion energy is one of the crucial property in thin film deposition by internal ICP assisted I-PVD. As ion energy is determined by the difference between the plasma potential and the substrate bias potential, ICP excitation frequency was tested with medium frequency of 4 MHz and two types of tuning circuits, alternate and floating LC network with a biasing resistor, were tested. The results showed that plasma potential was less than 5 V in a range of Ar pressures, 5mTorr to 30 mTorr, at 4 MHz RF 600 W and 60 V of maximum RF antenna voltage was maintained either at RF input or output terminal. By proper control of RLC circuit installed after after RF antenna, 50V of RF induced voltage on RF antenna was obtained at 500W input power. The total impedance of RF antenna and plasma was around 10$\Omega$, and minimum RF voltage was obtained with a condition of lowest reactance at most 0.05$\Omega$.

  • PDF

Offline In-Hand 3D Modeling System Using Automatic Hand Removal and Improved Registration Method (자동 손 제거와 개선된 정합방법을 이용한 오프라인 인 핸드 3D 모델링 시스템)

  • Kang, Junseok;Yang, Hyeonseok;Lim, Hwasup;Ahn, Sang Chul
    • Journal of the HCI Society of Korea
    • /
    • v.12 no.3
    • /
    • pp.13-23
    • /
    • 2017
  • In this paper, we propose a new in-hand 3D modeling system that improves user convenience. Since traditional modeling systems are inconvenient to use, an in-hand modeling system has been studied, where an object is handled by hand. However, there is also a problem that it requires additional equipment or specific constraints to remove hands for good modeling. In this paper, we propose a contact state change detection algorithm for automatic hand removal and improved ICP algorithm that enables outlier handling and additionally uses color for accurate registration. The proposed algorithm enables accurate modeling without additional equipment or any constraints. Through experiments using real data, we show that it is possible to accomplish accurate modeling under the general conditions without any constraint by using the proposed system.

Fingerprint Images Registration Method by Recursive Ridge Mapping (점진적 융선 정합을 통한 지문 영상 정렬 방법)

  • Choi, Kyoung-Taek;Choi, Hee-Seung;Kim, Jai-Hie
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.1007-1010
    • /
    • 2005
  • This paper presents a fingerprint image registration method. In the fingerprint system, the insufficiency of mutual information between a template and a query fingerprint is one of major factors to deteriorate recognition performance. To overcome this problem, we need to register multiple impressions and integrate their information. Our method matches the ridges from multiple impressions recursively and then registers the impressions to minimize the registration error calculated from the Distance map. Our method use regularized TPS model as the transformation model to compensate for the plastic deformation. We compare our method with 3 prior arts (ICP, Distance Map, Ross's method). Our registration error and its' variance is the smallest and also the average registration error is below 3 pixels.

  • PDF

Multimodal Medical Image Registration based on Image Sub-division and Bi-linear Transformation Interpolation (영상의 영역 분할과 이중선형 보간행렬을 이용한 멀티모달 의료 영상의 정합)

  • Kim, Yang-Wook;Park, Jun
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.1
    • /
    • pp.34-40
    • /
    • 2009
  • Transforms including translation and rotation are required for registering two or more images. In medical applications, different registration methods have been applied depending on the structures: for rigid bodies such as bone structures, affine transformation was widely used. In most previous research, a single transform was used for registering the whole images, which resulted in low registration accuracy especially when the degree of deformation was high between two images. In this paper, a novel registration method is introduced which is based image sub-division and bilinear interpolation of transformations. The proposed method enhanced the registration accuracy by 40% comparing with Trimmed ICP for registering color and MRI images.

A Study on Matching Method of Hull Blocks Based on Point Clouds for Error Prediction (선박 블록 정합을 위한 포인트 클라우드 기반의 오차예측 방법에 대한 연구)

  • Li, Runqi;Lee, Kyung-Ho;Lee, Jung-Min;Nam, Byeong-Wook;Kim, Dae-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.2
    • /
    • pp.123-130
    • /
    • 2016
  • With the development of fast construction mode in shipbuilding market, the demand on accuracy management of hull is becoming higher and higher in shipbuilding industry. In order to enhance production efficiency and reduce manufacturing cycle time in shipbuilding industry, it is important for shipyards to have the accuracy of ship components evaluated efficiently during the whole manufacturing cycle time. In accurate shipbuilding process, block accuracy is the key part, which has significant meaning in shortening the period of shipbuilding process, decreasing cost and improving the quality of ship. The key of block accuracy control is to create a integrate block accuracy controlling system, which makes great sense in implementing comprehensive accuracy controlling, increasing block accuracy, standardization of proceeding of accuracy controlling, realizing "zero-defect transferring" and advancing non-allowance shipbuilding. Generally, managers of accuracy control measure the vital points at section surface of block by using the heavy total station, which is inconvenient and time-consuming for measurement of vital points. In this paper, a new measurement method based on point clouds technique has been proposed. This method is to measure the 3D coordinates values of vital points at section surface of block by using 3D scanner, and then compare the measured point with design point based on ICP algorithm which has an allowable error check process that makes sure that whether or not the error between design point and measured point is within the margin of error.

Creation of Three-dimensional Convergence Model for Artifact Based on Optical Surface Scanning and X-ray CT: Sam-Chongtong Hand Canon in Jinju National Museum (광학식 표면스캐닝 및 X-선 CT를 활용한 유물의 3차원 융합모델 제작: 국립진주박물관 소장 삼총통)

  • Jo, Younghoon;Kim, Dasol;Kim, Haesol;Huh, Ilkwon;Song, Mingyu
    • Conservation Science in Museum
    • /
    • v.22
    • /
    • pp.15-26
    • /
    • 2019
  • This study was focused on the three-dimensional convergence modeling that can multilaterally analyze internal and external shapes of the Sam-Chongtong Hand Canon by optical precision scanning optimized for acquiring the surface shape and X-ray CT scanning used for obtaining the internal shape. First, the scanning results were converted by compatible extension, after which three-dimensional deviation analysis was conducted to verify mutual conformities. Accordingly, most (56.98%) deviations between the two scanning models was found be ±0.1mm. This result did not influence registration and merging based on the ICP algorithm. The merged data exhibited the external surface color, detailed shapes, internal width, and structure of the hand canon. The three-dimensional model based on optical surface scanning and X-ray CT scanning can be used for traditional technique interpretation as well as digital documentation of cultural heritage. In the future, it will contribute to deliver accessible scientific information of exhibits for visitors.