Offline In-Hand 3D Modeling System Using Automatic Hand Removal and Improved Registration Method

자동 손 제거와 개선된 정합방법을 이용한 오프라인 인 핸드 3D 모델링 시스템

  • 강준석 (과학기술연합대학원대학교 KIST 스쿨 나노-정보 융합 (HCI 및 로봇공학)) ;
  • 양현석 (과학기술연합대학원대학교 KIST 스쿨 나노-정보 융합 (HCI 및 로봇공학)) ;
  • 임화섭 (과학기술연합대학원대학교 나노-정보 융합, KIST 영상미디어연구단) ;
  • 안상철 (과학기술연합대학원대학교 나노-정보 융합, KIST 영상미디어연구단)
  • Received : 2017.05.23
  • Accepted : 2017.07.24
  • Published : 2017.08.31

Abstract

In this paper, we propose a new in-hand 3D modeling system that improves user convenience. Since traditional modeling systems are inconvenient to use, an in-hand modeling system has been studied, where an object is handled by hand. However, there is also a problem that it requires additional equipment or specific constraints to remove hands for good modeling. In this paper, we propose a contact state change detection algorithm for automatic hand removal and improved ICP algorithm that enables outlier handling and additionally uses color for accurate registration. The proposed algorithm enables accurate modeling without additional equipment or any constraints. Through experiments using real data, we show that it is possible to accomplish accurate modeling under the general conditions without any constraint by using the proposed system.

본 논문에서는 사용자의 편의성을 향상시킨 새로운 인 핸드 3D 모델링 시스템을 제안한다. 기존의 시스템은 사용자의 편의성이 낮은 문제점이 존재하여 물체를 손으로 들고 모델링을 진행하는 인 핸드 모델링 시스템이 연구되어 왔으나 손 제거를 위한 추가적인 장비가 필요하거나 특정 조건에서만 모델링이 가능한 문제가 발생하였다. 이에 본 논문에서는 자동 손 제거를 위한 접촉 상태 변화 감지 알고리즘과 정확한 정합을 위한 이상점 제어가 가능하고 색상정보를 추가적으로 이용하는 개선된 ICP 알고리즘을 제안한다. 제안된 알고리즘을 사용하면 추가적 장비나 어떠한 제한조건 없이 정확한 모델링이 가능하다. 본 논문에서는 실제 데이터를 이용한 실험을 통해 제안된 시스템을 활용하면 어떠한 제한 조건도 없는 일반적인 상황에서 정확한 모델링을 수행할 수 있음을 보였다.

Keywords

References

  1. Park, S. and Murali, S. A multiview 3D modeling system based on stereo vision techniques. Machine Vision and Applications. 16(3). pp. 148-156. 2005. https://doi.org/10.1007/s00138-004-0165-2
  2. Levoy, M., Pulli, K., Curless, B., Rusinkiewicz, S., Koller, D., Pereira, L., Ginzton, M., Anderson, S., Davis, J., Ginsberg, J., Shade, J. and Fulk, D. The digital Michelangelo project: 3D scanning of large statues. Proceedings of the 27th annual conference on Computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co. pp. 131-144. 2000.
  3. Beraldin, J. A. Integration of laser scanning and close-range photogrammetry-The last decade and beyond. Proceedings of the XXth ISPRS Congress. 35(B). pp. 972-983. 2004.
  4. Sense 3D scanner. https://3dsystems.com/shop/sense/. 2016. 12. 22
  5. EORA 3D. https://eora3d.com/product.html. 2016.12.22
  6. Weise, T., Leibe, B. and Van Gool, L. Accurate and robust registration for in-hand modeling. Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference. pp. 1-8. 2008.
  7. Weise, T., Wismer, T., Leibe, B. and Van Gool, L. In-hand scanning with online loop closure. Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th International Conference. pp. 1630-1637. 2009.
  8. Saelzle, M. In-hand scanner for small objects. http://pointclouds.org/documentation/tutorials/in_hand_scanner.php. 2017. 1. 17.
  9. Panteleris, P., Kyriazis, N. and Argyros, A. A. 3D Tracking of Human Hands in Interaction with Unknown Objects. British Machine Vision Conference (BMVC). pp. 123.1-123.12. 2015.
  10. Jones, M. J. and Rehg, J. M. Statistical color models with application to skin detection. International Journal of Computer Vision. 46(1). pp. 81-96. 2002. https://doi.org/10.1023/A:1013200319198
  11. Oikonomidis, I., Kyriazis, N. and Argyros, A. A. Efficient model-based 3D tracking of hand articulations using Kinect. British Machine Vision Conference (BMVC). 1(2). pp. 1-11. 2011.
  12. Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko, C. D., Silverman, R. and Wu, A. Y. An efficient k-means clustering algorithm: Analysis and implementation. IEEE transactions on pattern analysis and machine intelligence. 24(7). pp. 881-892. 2002. https://doi.org/10.1109/TPAMI.2002.1017616
  13. Xue, H., Chen, S. and Yang, Q. Structural support vector machine. Advances in Neural Networks-ISNN 2008. pp. 501-511. 2008.
  14. Hare, S., Golodetz, S., Saffari, A., Vineet, V., Cheng, M. M., Hicks, S. L. and Torr, P. H. Struck: Structured output tracking with kernels.IEEE transactions on pattern analysis and machine intelligence. 38(10). pp. 2096-2109. 2016. https://doi.org/10.1109/TPAMI.2015.2509974
  15. Newcombe, R. A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A. J., Kohli, P., Shotton, J., Hodges, S. and Fitzgibbon, A. KinectFusion: Real-time dense surface mapping and tracking. Mixed and augmented reality (ISMAR), 2011 10th IEEE international symposium. pp. 127-136. 2011.
  16. Klingensmith, M., Dryanovski, I., Srinivasa, S. and Xiao, J. Chisel: Real Time Large Scale 3D Reconstruction Onboard a Mobile Device using Spatially Hashed Signed Distance Fields. Robotics: Science and Systems. 2015.
  17. Besl, P. J. and McKay, N. D. Method for registration of 3-D shapes. Robotics-DL tentative. International Society for Optics and Photonics. 14(2). pp. 239-256. 1992.
  18. Chen, Y. and Medioni, G. Object modelling by registration of multiple range images. Image and vision computing. 10(3). pp. 145-155. .1992. https://doi.org/10.1016/0262-8856(92)90066-C
  19. Zhou, Q. Y., Park, J. and Koltun, V. Fast global registration. European Conference on Computer Vision. Springer International Publishing. pp. 766-782. 2016.
  20. Kazhdan, M. and Hoppe, H. Screened poisson surface reconstruction. ACM Transactions on Graphics (TOG). 32(3). Article No. 29. 2013.
  21. Garland, M. and Heckbert, P. S. Surface simplification using quadric error metrics. Proceedings of the 24th annual conference on Computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co. pp. 209-216. 1997.
  22. Waechter, M., Moehrle, N. and Goesele, M. Let there be color! Large-scale texturing of 3D reconstructions. European Conference on Computer Vision. SpringerInternational Publishing. pp. 836-850. 2014.