• 제목/요약/키워드: I-layer

검색결과 3,037건 처리시간 0.048초

Optimized ultra-thin tunnel oxide layer characteristics by PECVD using N2O plasma growth for high efficiency n-type Si solar cell

  • Jeon, Minhan;Kang, Jiyoon;Oh, Donghyun;Shim, Gyeongbae;Kim, Shangho;Balaji, Nagarajan;Park, Cheolmin;Song, Jinsoo;Yi, Junsin
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.308-309
    • /
    • 2016
  • Reducing surface recombination is a critical factor for high efficiency silicon solar cells. The passivation process is for reducing dangling bonds which are carrier. Tunnel oxide layer is one of main issues to achieve a good passivation between silicon wafer and emitter layer. Many research use wet-chemical oxidation or thermally grown which the highest conversion efficiencies have been reported so far. In this study, we deposit ultra-thin tunnel oxide layer by PECVD (Plasma Enhanced Chemical Vapor Deposition) using $N_2O$ plasma. Both side deposit tunnel oxide layer in different RF-power and phosphorus doped a-Si:H layer. After deposit, samples are annealed at $850^{\circ}C$ for 1 hour in $N_2$ gas atmosphere. After annealing, samples are measured lifetime and implied Voc (iVoc) by QSSPC (Quasi-Steady-State Photo Conductance). After measure, samples are annealed at $400^{\circ}C$ for 30 minute in $Ar/H_2$ gas atmosphere and then measure again lifetime and implied VOC. The lifetime is increase after all process also implied VOC. The highest results are lifetime $762{\mu}s$, implied Voc 733 mV at RF-power 200 W. The results of C-V measurement shows that Dit is increase when RF-power increase. Using this optimized tunnel oxide layer is attributed to increase iVoc. As a consequence, the cell efficiency is increased such as tunnel mechanism based solar cell application.

  • PDF

칠 기법 규명을 위한 칠도막의 현미경 관찰 (Observation by the Microscopic Analysis of Lacquer Layer for Identification of Lacquer-ware Function)

  • 김수철;이광희
    • Journal of the Korean Wood Science and Technology
    • /
    • 제36권6호
    • /
    • pp.96-104
    • /
    • 2008
  • 본 연구에서는 고대 칠 기법을 규명하기 위하여 4가지 그룹의 표준칠편을 제작하여 광학현미경(투광, 낙사광, 편광)을 이용한 관찰을 실시하였다. 그룹 I 은 투명한 적갈색을 띠며 일부 층의 구분이 불명확하였고 연마가 된 층은 구분이 쉽게 되었다. 그룹 II는 대부분 투명 황갈색을 띠며 목재표면에 먼저 흑색안료를 메운 후 칠한 칠층과 흑색안료를 혼합하여 칠 한 칠층은 구분이 가능하였다. 그룹 III은 칠이 경화되는 과정에서 상층 부분이 먼저 막을 형성하고 내부는 칠과 불포화지방산이 산화 건조되어 상층의 칠층이 분리되어 관찰되었다. 그룹 IV의 칠도 막은 편광에서 관찰시 철 성분이 검은색과 붉은색으로 혼합되어 보이며 토분은 실리카 결정이 빛의 반사에 의하여 구분되어 졌다. 또한 석간주 칠층은 붉은색을 띠고 주칠과 석간주가 혼합된 칠은 윗부분과 아랫부분이 짙은 붉은 색을 띠며 가운데는 밝은 붉은색으로 구분되어 졌다.

버퍼막 두께에 따른 ZnO/ZnO/p-Si(111) 이종접합 다이오드 특성 평가 (Dependence of the Heterojunction Diode Characteristics of ZnO/ZnO/p-Si(111) on the Buffer Layer Thickness)

  • 허주회;류혁현;이종훈
    • 한국재료학회지
    • /
    • 제21권1호
    • /
    • pp.34-38
    • /
    • 2011
  • In this study, the effects of an annealed buffer layer with different thickness on heterojunction diodes based on the ZnO/ZnO/p-Si(111) systems were reported. The effects of an annealed buffer layer with different thickness on the structural, optical, and electrical properties of zinc oxide (ZnO) films on p-Si(111) were also studied. Before zinc oxide (ZnO) deposition, different thicknesses of ZnO buffer layer, 10 nm, 30 nm, 50 nm and 70 nm, were grown on p-Si(111) substrates using a radio-frequency sputtering system; samples were subsequently annealed at $700^{\circ}C$ for 10 minutes in $N_2$ in a horizontal thermal furnace. Zinc oxide (ZnO) films with a width of 280nm were also deposited using a radio-frequency sputtering system on the annealed ZnO/p-Si (111) substrates at room temperature; samples were subsequently annealed at $700^{\circ}C$ for 30 minutes in $N_2$. In this experiment, the structural and optical properties of ZnO thin films were studied by XRD (X-ray diffraction), and room temperature PL (photoluminescence) measurements, respectively. Current-voltage (I-V) characteristics were measured with a semiconductor parameter analyzer. The thermal tensile stress was found to decrease with increasing buffer layer thickness. Among the ZnO/ZnO/p-Si(111) diodes fabricated in this study, the sample that was formed with the condition of a 50 nm thick ZnO buffer layer showed a strong c-axis preferred orientation and I-V characteristics suitable for a heterojunction diode.

Improved Breakdown Voltage Characteristics of $In_{0.5}Ga_{0.5}P/In_{0.22}Ga_{0.78}As/GaAs$ p-HEMT with an Oxidized GaAs Gate

  • I-H. Kang;Lee, J-W.;S-J. Kang;S-J. Jo;S-K. In;H-J. Song;Kim, J-H.;J-I. Song
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제3권2호
    • /
    • pp.63-68
    • /
    • 2003
  • The DC and RF characteristics of $In_{0.5}Ga_{0.5}P/In_{0.22}Ga_{0.78}As/GaAs$ p-HEMTs with a gate oxide layer of various thicknesses ($50{\;}{\AA},{\;}300{\;}{\AA}$) were investigated and compared with those of a Schottky-gate p-HEMT without the gate oxide layer. A prominent improvement in the breakdown voltage characteristics were observed for a p-HEMT having a gate oxide layer, which was implemented by using a liquid phase oxidation technique. The on-state breakdown voltage of the p-HEMT having the oxide layer of $50{\;}{\AA}$was ~2.3 times greater than that of a Schottky-gate p-HEMT. However, the p-HEMT having the gate oxide layer of $300{\;}{\AA}$ suffered from a poor gate-control capability due to the drain induced barrier lowering (DIBL) resulting from the thick gate oxide inspite of the lower gate leakage current and the higher on-state breakdown voltage. The results for a primitive p-HEMT having the gate oxide layer without any optimization of the structure and the process indicate the potential of p-HEMT having the gate oxide layer for high-power applications.

Enhanced Electrical Properties of Light-emitting Electrochemical Cells Based on PEDOT:PSS incorporated Ruthenium(II) Complex as a Light-emitting layer

  • 강용수;박성희;이혜현;조영란;황종원;최영선
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.139-139
    • /
    • 2010
  • Ionic Transition Metal Complex based (iTMC) Light-emitting electrochemical cells (LEECs) have been drawn attention for cheap and easy-to-fabricate light-emitting device. LEEC is one of the promising candidate for next generation display and solid-state lighting applications which can cover the defects of current commercial OLEDs like complicated fabrication process and strong work-function dependent sturucture. We have investigated the performance characteristics of LEECs based on poly (3, 4-ethylenedioxythiophene):poly (styrene sulfonate) (PEDOT:PSS)-incorporated transition metal complex, which is tris(2, 2'-bipyridyl)ruthenium(II) hexafluorophosphate in this study. There are advantages using conductive polymer-incorporated luminous layer to prevent light disturbance and absorbance while light-emitting process between light-emitting layer and transparent electrode like ITO. The devices were fabricated as sandwiched structure and light-emitting layer was deposited approximately 40nm thickness by spin coating and aluminum electrode was deposited using thermal evaporation process under the vacuum condition (10-3Pa). Current density and light intensity were measured using optical spectrometer, and surface morphology changes of the luminous layer were observed using XRD and AFM varying contents of PEDOT:PSS in the Ruthenium(II) complex solution. To observe enhanced ionic conductivity of PEDOT:PSS and luminous layer, space-charge-limited-currents model was introduced and it showed that the performances and stability of LEECs were improved. Main discussions are the followings. First, relationship between film thickness and performance characteristics of device was considered. Secondly, light-emitting behavior when PEDOT:PSS layer on the ITO, as a buffer, was introduced to iTMC LEECs. Finally, electrical properties including carrier mobility, current density-voltage, light intensity-voltage, response time and turn-on voltages were investigated.

  • PDF