• 제목/요약/키워드: I-${\kappa}B$ phosphorylation

검색결과 243건 처리시간 0.027초

Sulforaphane controls TPA-induced MMP-9 expression through the NF-κB signaling pathway, but not AP-1, in MCF-7 breast cancer cells

  • Lee, Young-Rae;Noh, Eun-Mi;Han, Ji-Hey;Kim, Jeong-Mi;Hwang, Bo-Mi;Kim, Byeong-Soo;Lee, Sung-Ho;Jung, Sung Hoo;Youn, Hyun Jo;Chung, Eun Yong;Kim, Jong-Suk
    • BMB Reports
    • /
    • 제46권4호
    • /
    • pp.201-206
    • /
    • 2013
  • Sulforaphane [1-isothiocyanato-4-(methylsulfinyl)-butane] is an isothiocyanate found in some cruciferous vegetables, especially broccoli. Sulforaphane has been shown to display anti-cancer properties against various cancer cell lines. Matrix metalloproteinase-9 (MMP-9), which degrades the extracellular matrix (ECM), plays an important role in cancer cell invasion. In this study, we investigated the effect of sulforaphane on 12-O-tetradecanoyl phorbol-13-acetate (TPA)-induced MMP-9 expression and cell invasion in MCF-7 cells. TPA-induced MMP-9 expression and cell invasion were decreased by sulforaphane treatment. TPA substantially increased NF-${\kappa}B$ and AP-1 DNA binding activity. Pre-treatment with sulforaphane inhibited TPA-stimulated NF-${\kappa}B$ binding activity, but not AP-1 binding activity. In addition, we found that sulforaphane suppressed NF-${\kappa}B$ activation, by inhibiting phosphorylation of $I{\kappa}B $ in TPA-treated MCF-7 cells. In this study, we demonstrated that the inhibition of TPA-induced MMP-9 expression and cell invasion by sulforaphane was mediated by the suppression of the NF-${\kappa}B$ pathway in MCF-7 cells.

현토단(玄兎丹)의 RAW 264.7 대식 세포에서의 항염증 효과에 관한 연구 (The study of anti-inflammatory effect of Hyeonto-dan extract in RAW 264.7 macrophage)

  • 김마룡;강옥화;공룡;서윤수;주전;김상아;김은수;신민아;이영섭;권동렬
    • 대한본초학회지
    • /
    • 제32권2호
    • /
    • pp.77-85
    • /
    • 2017
  • Objectives : This study aimed to investigate the unknown mechanisms behind the anti- inflammatory activity of Hyeonto-dan(HT) 70% ethanol extract on LPS-stimulated RAW 264.7 cells. Methods : Cells were treated with Hyeonto-dan 1 h prior to addition of 200 ng/mL of LPS. Cell viability was measured by the MTS assay. Nitric oxide levels were determined by the Griess assay. $PGE_2$ were measured using EIA kit. Pro-inflammatory cytokine production was measured by the enzyme-linked immunosorbent assay (ELISA). The expression of COX-2, iNOS, and MAPKs was investigated by Western blot, qRT-PCR. $NF-{\kappa}B$/p65 localization and interaction of the TLR-4 receptor with LPS was examined by immunofluorescence assays. Results : Hyeonto-dan had no cytotoxicity at the measured concentration. Hyeonto-dan inhibited NO production and pro-inflammatory cytokines such as IL-6, $TNF-{\alpha}$, and PGE2 as well as the protein and mRNA expression of iNOS and COX-2. Moreover, Hyeonto-dan inhibited the interaction between LPS and TLR-4 in murine macrophages. It suppressed phosphorylation of extracellular signal-regulated kinase (ERK 1/2), c-jun N-terminal kinase (JNK 1/2) and p38. Finally, it inhibited translocation of $NF-{\kappa}B$ in response to competitive LPS. Conclusions : Based on the results of this study, Hyeonto-dan inhibited the binding of TLR-4 receptor to LPS and inhibited the phosphorylation of extracellular signaling pathway MAPKs. These inhibitory effects are thought that the amount of $NF-{\kappa}B$ delivered to the nucleus was decreased and the inflammatory reaction was prevented by decreasing the production of LPS-induced $PGE_2$, NO, IL-6 and $TNF-{\alpha}$.

Tat-ATOX1 inhibits inflammatory responses via regulation of MAPK and NF-κB pathways

  • Kim, Dae Won;Shin, Min Jea;Choi, Yeon Joo;Kwon, Hyun Jung;Lee, Sung Ho;Lee, Sunghou;Park, Jinseu;Han, Kyu Hyung;Eum, Won Sik;Choi, Soo Young
    • BMB Reports
    • /
    • 제51권12호
    • /
    • pp.654-659
    • /
    • 2018
  • Antioxidant 1 (ATOX1) protein has been reported to exhibit various protective functions, including antioxidant and chaperone. However, the effects of ATOX1 on the inflammatory response has not been fully elucidated. Thus, we prepared cell permeable Tat-ATOX1 and studied the effects on lipopolysaccharide (LPS)- and 12-O-tetradecanoyl phorbol-13-acetate (TPA)-induced inflammation. Experimental results showed that transduced Tat-ATOX1 protein significantly suppressed LPS-induced intracellular reactive oxygen species (ROS). Also, Tat-ATOX1 protein markedly inhibited LPS- and TPA-induced inflammatory responses by decreasing cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) and further inhibited phosphorylation of mitogen activated protein kinases (MAPKs; JNK, ERK and p38) and the nuclear factor-kappaB ($NF-{\kappa}B$) signaling pathway. These results indicate that the Tat-ATOX1 protein has a pivotal role in inflammation via inhibition of inflammatory responses, suggesting Tat-ATOX1 protein may offer a therapeutic strategy for inflammation.

Micronized and Heat-Treated Lactobacillus plantarum LM1004 Stimulates Host Immune Responses Via the TLR-2/MAPK/NF-κB Signalling Pathway In Vitro and In Vivo

  • Lee, Jisun;Jung, Ilseon;Choi, Ji Won;Lee, Chang Won;Cho, Sarang;Choi, Tae Gyu;Sohn, Minn;Park, Yong Il
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권5호
    • /
    • pp.704-712
    • /
    • 2019
  • Although nanometric dead Lactobacillus plantarum has emerged as a potentially important modulator of immune responses, its underlying mechanism of action has not been fully understood. This study aimed to identify the detailed biochemical mechanism of immune modulation by micronized and heat-treated L. plantarum LM1004 (MHT-LM1004, <$1{\mu}m$ in size). MHT-LM1004 was prepared from L. plantarum LM1004 via culture in a specifically designed membrane bioreactor and heat treatment. MHT-LM1004 was shown to effectively induce the secretion of $TNF-{\alpha}$ and IL-6 and the mRNA expression of inducible nitric oxide synthase (iNOS). MHT-LM1004 enhanced the expression of TLR-2, phosphorylation of MAPKs (ERK), and nuclear translocation of $NF-{\kappa}B$ in a dose-dependent manner. Oral administration of MHT-LM1004 ($4{\times}10^9$ or $4{\times}10^{11}cells/kg$ mouse body weight) increased the splenocyte proliferation and serum cytokine levels. These results suggested that MHT-LM1004 effectively enhances early innate immunity by activating macrophages via the TLR-2/MAPK/$NF-{\kappa}B$ signalling pathway and that this pathway is one of the major routes in immune modulation by the Lactobacillus species.

사람 신경모세포종 세포주 SH-SY5Y에서 fenretinide에 의한 GD3합성효소(hST8Sia I)의 전사조절기작 (Transcriptional Regulation of Human GD3 Synthase (hST8Sia I) by Fenretinide in Human Neuroblastoma SH-SY-5Y Cells)

  • 강남영;권화영;이영춘
    • 생명과학회지
    • /
    • 제20권9호
    • /
    • pp.1332-1338
    • /
    • 2010
  • 사람 신경모세포종 세포주 SH-SY5Y에서 Fenretinide (FenR)에 의한 GD3합성효소(hST8Sia I)의 발현증가기작을 규명하게 위하여 hST8Sia I의 프로모터 활성을 조사해 본 결과 -1146에서 -646영역에서 FenR에 의한 활성증가를 나타내었다. 또한 부위특이적 변이의 분석은 -731에서 -722영역에 위치한 전사인자 NF-kB 결합부위가 hST8Sia I의 FenR에 의한 활성증가에 중요하게 관여하고 있음을 나타내었다. FenR에 의한 hST8Sia I 유전자의 발현유도에 포함된 신호전달기작을 전사인자 단백질의 항체를 이용하여 조사해 본 결과 FenR처리에 의해 세포질에서는 인산화된 AKT단백질 수준의 증가가 관찰되었고 핵내에서는 NF-kB의 p65단백질의 증가가 관찰되었다. 이러한 결과들은 FenR에 의한 hST8Sia I 유전자의 발현증가는 AKT신호전달경로에 의해 활성화된 NF-kB의 핵내로 이동하여 hST8Sia I 유전자의 프로모터에 결합함으로서 전사가 촉진되어 일어난다는 것을 나타낸다.

Cytochalasin B Modulates Macrophage-Mediated Inflammatory Responses

  • Kim, Mi-Yeon;Kim, Jong-Hoon;Cho, Jae Youl
    • Biomolecules & Therapeutics
    • /
    • 제22권4호
    • /
    • pp.295-300
    • /
    • 2014
  • The actin cytoskeleton plays an important role in macrophage-mediated inflammatory responses by modulating the activation of Src and subsequently inducing nuclear factor (NF)-${\kappa}B$ translocation. In spite of its critical functions, few papers have examined how the actin cytoskeleton can be regulated by the activation of toll-like receptor (TLR). Therefore, in this study, we further characterized the biological value of the actin cytoskeleton in the functional activation of macrophages using an actin cytoskeleton disruptor, cytochalasin B (Cyto B), and explored the actin cytoskeleton's involvement in morphological changes, cellular attachment, and signaling events. Cyto B strongly suppressed the TLR4-mediated mRNA expression of inflammatory genes such as cyclooxygenase (COX)-2, tumor necrosis factor (TNF)-${\alpha}$, and inducible nitric oxide (iNOS), without altering cell viability. This compound also strongly suppressed the morphological changes induced by lipopolysaccharide (LPS), a TLR4 ligand. Cyto B also remarkably suppressed NO production under non-adherent conditions but not in an adherent environment. Cyto B did not block the co-localization between surface glycoprotein myeloid differentiation protein-2 (MD2), a LPS signaling glycoprotein, and the actin cytoskeleton under LPS conditions. Interestingly, Cyto B and PP2, a Src inhibitor, enhanced the phagocytic uptake of fluorescein isothiocyanate (FITC)-dextran. Finally, it was found that Cyto B blocked the phosphorylation of vasodilator-stimulated phosphoprotein (VASP) at 1 min and the phosphorylation of heat shock protein 27 (HSP27) at 5 min. Therefore, our data suggest that the actin cytoskeleton may be one of the key components involved in the control of TLR4-mediated inflammatory responses in macrophages.

Inhibitory Effect of Taraxci Herba Methanol Extract on Pro-inflammatory Mediator in Lipopolysaccharide;Activated Raw 264.7 cells

  • Jo, Mi-Jeong;Chu, Yan-Hui;Back, Young-Doo;Lee, Byung-Wook;Shin, Soon-Shik;Kwon, Young-Kyu;Kim, Sang-Chan
    • 동의생리병리학회지
    • /
    • 제22권4호
    • /
    • pp.907-913
    • /
    • 2008
  • Taraxci Herba (TH; Pogongyoung in Korean) has been used in traditional oriental medicine for the treatment of various ailments. The biological activity of this plant is not yet evaluated systematically. This study was conducted to evaluate the inhibitory effects of TH on the production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS) in lipopolysaccharide (LPS)-activated Raw264.7 cells. The aim of the present work is to investigate a potential anti-inflammatory activity of TH. The Raw264.7 cells were cultured in DMEM medium for 24 h. After serum starvation for 12 h, the cells were treated with TH for 1 h, followed by stimulating NO production with LPS ($2{\mu}g/ml$). As result of this study, TH inhibited the levels of NO, PGE2, $TNF-{\alpha}$, IL-6 and $IL-1{\beta}$, and the expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) activated by LPS. These inhibitory effects were mediated though the inhibition of phosphorylation of inhibitory kappa B ($I{\kappa}B$). These findings showed that TH could have some anti-inflammatory effects.

오공(蜈蚣) 에테르 추출물의 RAW 264.7 cell에서 LPS로 유도된 염증반응 억제 효과 (Inhibitory Effect of Scolopendra Morsitans L. Ether Extract on Lipopolysaccharide-Induced Inflammatory Response in RAW 264.7 Cells)

  • 정호경;조현우;정원석;최인영;조정희;정수영
    • 동의생리병리학회지
    • /
    • 제27권1호
    • /
    • pp.78-82
    • /
    • 2013
  • It has been reported that Scolopendra morsitans L.(SML) has beneficial effects on human health and diverse diseases. The purpose of this study was to investigate the anti-inflammatory effects of ether extract from Scolopendra morsitans L. on lipopolysaccharide(LPS)-induced inflammatory response. Thus, we examined the inhibitory effect of SML ether fraction on LPS-induced increase of inflammatory mediators(NO, iNOS, COX-2, and $I{\kappa}B{\alpha}$) and pro-inflammatory cytokines(TNF-${\alpha}$) in RAW 264.7 cells. In the present study, SML ether extract itself decreased cell viability in a dose dependent manner(> 100 ${\mu}g/ml$). In addition, LPS increased NO production, iNOS expression and phosphorylation of $I{\kappa}-B{\alpha}$, which were blocked by the treatment of SML ether fraction in a dose dependent manner. Furthermore, the treatment of LPS increased TNF-${\alpha}$ production. However, the pretreatment of SML ether fraction prevented the LPS-induced TNF-${\alpha}$ production in dose dependant manner. Taken together, our results suggest that SML may be a beneficial drug against inflammatory diseases such as sepsis.

Inhibitory Effect of Sageretia theezans against the Production of Pro-Inflammatory Mediators through the Inhibition of NF-κB and MAPK, and Activation of Nrf2/HO-1 Signaling Pathways in LPS-Stimulated RAW264.7 cells

  • Kim, Ha Na;Park, Su Bin;Kim, Jeong Dong;Jeong, Hyung Jin;Jeong, Jin Boo
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2018년도 추계학술대회
    • /
    • pp.98-98
    • /
    • 2018
  • In this study, we evaluated the anti-inflammatory effect of extracts of leaves (ST-L) and branches (ST-B) from Sageretia theezans in LPS-stimulated RAW264.7 cells. ST-L and ST-B significantly inhibited the production of the pro-inflammatory mediators such as NO, iNOS, COX-2, $IL-1{\beta}$ and IL-6 in LPS-stimulated RAW264.7 cells. ST-L and ST-B blocked LPS-induced degradation of $I{\kappa}B-{\alpha}$ and nuclear accumulation of p65, which resulted to the inhibition of $NF-{\kappa}B$ activation in RAW264.7 cells. ST-L and ST-B also attenuated the phosphorylation of ERK1/2, p38 and JNK in LPS-stimulated RAW264.7 cells. In addition, ST-L and ST-B increased HO-1 expression in RAW264.7 cells, and the inhibition of HO-1 by ZnPP reduced the inhibitory effect of ST-L and ST-B against LPS-induced NO production in RAW264.7 cells. Inhibition of p38 activation and ROS elimination attenuated HO-1 expression by ST-L and ST-B, and ROS elimination inhibited p38 activation induced by ST-L and ST-B. ST-L and ST-B dramatically induced nuclear accumulation of Nrf2, but this was significantly reversed by the inhibition of p38 activation and ROS elimination. Collectively, our results suggest that ST-L and ST-B exerts potential anti-inflammatory activity by suppressing $NF-{\kappa}B$ and MAPK signaling activation, and activating HO-1 expression through the nuclear accumulation of Nrf2 via ROS-dependent p38 activation. These findings suggest that ST-L and ST-B may have great potential for the development of anti-inflammatory drug to treat acute and chronic inflammatory disorders.

  • PDF

RBL-2H3세포에서 생지황약침액의 FcεRI 신호전달을 통한 β-hexosaminidase분비와 Cytokine생성 억제 효과 (Inhibitory Effect of Rehmannia Glutinosa Pharmacopuncture Solution on β-hexosaminidase Release and Cytokine Production via FcεRI signaling in RBL-2H3 Cells)

  • Kang, Kyung-Hwa;Kim, Cheol-Hong
    • 대한약침학회지
    • /
    • 제14권2호
    • /
    • pp.15-24
    • /
    • 2011
  • Background: Type I allergy is involved in allergic asthma, allergic rhinitis, and atopic dermatitis which are accompanied by an acute and chronic allergic inflammatory responses. Rehmannia glutinosa is a traditional medicine in the East Asian region. This study examined whether a Rehmannia Glutinosa pharmacopuncture solution (RGPS) had anti-allergic or anti-inflammatory effects in antigen-stimulated-RBL-2H3 cells. Methods: We determined the effect of RGPS on cell viability using the 3-[4,5-dimethylthiazolyl]-2,5-diphenyltetrazolium bromide (MTT) assay. We also examined the effect of RGPS on the release of ${\beta}$-hexosaminidase and the secretion of IL-4 and TNF-${\alpha}$ using ELISA. In addition, we evaluated the effect of RGPS on the mRNA expression of various cytokines; IL-2, IL-3, IL-4, IL-5, IL-13 and TNF-${\alpha}$ using RT-PCR. Furthermore, we assessed the activation of mitogen-activated protein kinases (MAPKs) and nuclear factor (NF)-${\kappa}$B using Western blotting after RGPS treatment. Results: We found that RGPS ($10^{-4}$ to $10^{-1}$ dilution) did not cause any cytotoxicity. We observed significant inhibition of ${\beta}$-hexosaminidase release and suppression of the protein secretion of IL-4 and TNF-${\alpha}$ and mRNA expression of multiple cytokines in antigen-stimulated-RBL-2H3 cells after RGPS treatment. Additionally, RGPS suppressed not only the phosphorylation of MAPKs, but also the transcriptional activation of NF-${\kappa}$B in antigen-stimulated-RBL-2H3 cells. Conclusions: These results suggest that RGPS inhibits degranulation and expression of cytokines including IL-4 and TNF-${\alpha}$ via down-regulation of MAPKs and NF-${\kappa}$B activation in antigen-stimulated-RBL-2H3 cells. In conclusion, RGPS may have beneficial effects in the exerting anti-allergic or anti-inflammatory activities.