Browse > Article

Inhibitory Effect of Scolopendra Morsitans L. Ether Extract on Lipopolysaccharide-Induced Inflammatory Response in RAW 264.7 Cells  

Jung, Ho Kyung (Jeonnam Development Institute for Korean Traditional Medicine)
Cho, Hyun Woo (Jeonnam Development Institute for Korean Traditional Medicine)
Jung, Won Seok (Jeonnam Development Institute for Korean Traditional Medicine)
Choi, In Young (Jeonnam Development Institute for Korean Traditional Medicine)
Cho, Jung Hee (Jeonnam Development Institute for Korean Traditional Medicine)
Jung, Su Young (Jeonnam Development Institute for Korean Traditional Medicine)
Publication Information
Journal of Physiology & Pathology in Korean Medicine / v.27, no.1, 2013 , pp. 78-82 More about this Journal
Abstract
It has been reported that Scolopendra morsitans L.(SML) has beneficial effects on human health and diverse diseases. The purpose of this study was to investigate the anti-inflammatory effects of ether extract from Scolopendra morsitans L. on lipopolysaccharide(LPS)-induced inflammatory response. Thus, we examined the inhibitory effect of SML ether fraction on LPS-induced increase of inflammatory mediators(NO, iNOS, COX-2, and $I{\kappa}B{\alpha}$) and pro-inflammatory cytokines(TNF-${\alpha}$) in RAW 264.7 cells. In the present study, SML ether extract itself decreased cell viability in a dose dependent manner(> 100 ${\mu}g/ml$). In addition, LPS increased NO production, iNOS expression and phosphorylation of $I{\kappa}-B{\alpha}$, which were blocked by the treatment of SML ether fraction in a dose dependent manner. Furthermore, the treatment of LPS increased TNF-${\alpha}$ production. However, the pretreatment of SML ether fraction prevented the LPS-induced TNF-${\alpha}$ production in dose dependant manner. Taken together, our results suggest that SML may be a beneficial drug against inflammatory diseases such as sepsis.
Keywords
Scolopendra morsitans L.; Anti-inflammation; Nitric oxide; COX-2; TNF-${\alpha}$;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Kim, S.N. Study on genetic analysis and extract cytotoxicity of Scolopenda subspinipes mulitilans L. Koch. MS Thesis. Wonkwang University. p 37, 2005.
2 중약대사전편찬위원회, 중약대사전, 서울. 도서출판 정담. pp 3026-3030, 1997.
3 이동희, 김호철, 안덕균. 오공의 항고혈압작용에 관한 연구. 대한본초학회지 12(2):39-49, 1997.
4 정병태, 장경전, 송춘호, 안창범. 오공수침이 진통 및 진경효과에 미치는 영향. 대한침구학회지 14(2):219-230, 1997.
5 Choi, Y.K., Lee, D.U., Kim, G.W., Koo, B.S. Antioxidative Effects of Scolopendra subspinipes. The Journal of Oriental Neuropsychiatry 19: 129-142, 2008.
6 Kim, S.C., Seo, G.Y., Lee, S.W., Park, S.J., Kim, J.H., Ahn, S.H. Hwang, S.Y. Biological Activities of Scolopendrid Pharmacopuncture. Journal of Pharmacopuncture. 13: 5-13, 2010.
7 Jo, I.J.,, Choi, M.O., Park, M.C., Song, H.J., Park, S.J. Anti-Inflammatory Effect of Aqueous Extract of Scolopendrae Corpus in RAW 264.7 Cells. Kor J Herbology 26(3):23-29, 2011.
8 Kim, G.S., Seo, U.K., Jeong, J.C. Effects of Scolopendrae corpus on immune response in mice of different ages. Korean J. Orient Int Med 19: 477-490, 1998.
9 송인석, 김동현. 오공의 항경련효과. 경희약대논문집. 24: 91-93, 1996.
10 오공의 항산화효과에 관한연구, 동의신경정신과학회지 19(3):129-142, 2008.
11 홍남두. 오공의 약물학적 연구. 경희약대논문집. 5: 20-27, 1977.
12 생약학교재편찬위원회. 생약학. 파주. 동명사. pp 679-680, 2008.
13 Erwig, L.P., Rees, A.J. Macrophage activation and programming and its role for macrophage function in glomerular inflammation. Kidney Blood Press Res 22(1-2):21-25, 1999.   DOI   ScienceOn
14 McDaniel, M.L., Kwon, G., Hill, J.R., Marshall, C.A., Corbett, J.A. Cytokines and nitric oxide in islet inflammation and diabetes. Proc Soc Exp Biol Med 211: 24-32, 1996.   DOI
15 Willeaume, V., Kruys, V., Mijatovic, T., Huez G. Tumor necrosis factor-alpha production induced by viruses and by lipopolysaccharides in macrophages: similarities and differences. J Inflamm 46: 1-12, 1996.
16 Takeda, K., Kaisho, T., Akira, S. Toll-like receptors. Annu Rev Immunol 21: 335-376, 2003.   DOI   ScienceOn
17 La, Sala, A., Gadina, M., Kelsall, B.L. G(i)-protein-dependent inhibition of IL-12 production is mediated by activation of the phosphatidylinositol 3-kinase-protein 3 kinase B/Akt pathway and JNK. J. Immunol 175: 2994-2999, 2005.   DOI
18 Lu, C.N., Yuan, Z.G., Zhang, X.L., Yan, R., Zhao, Y.Q., Liao, M., Chen, J.X. Saikosaponin a and its epimer saikosaponin d exhibit anti-inflammatory activity by suppressing activation of NF-${\kappa}B$ signaling pathway. Int Immunopharmacol 14(1):121-126, 2012.   DOI   ScienceOn
19 Kim, D.H., Park, S.J., Jung, J.Y., Kim, S.C., Byun, S.H. Antiinflammatory effects of the aqueous extract of Hwangnyenhaedok-tang in LPS-activated macrophage cells. Kor J Herbol 24: 39-47, 2009.
20 Park, S.M., Byun, S.H., Kim, Y.W., Cho, I.J., Kim, S.C. Inhibitory effect of Mori Folium ethanol extract on pro-inflammatory mediator in lipopolysaccharide-activated RAW 264.7 cells. Kor. J. Herbology 27(3):31-38, 2012.
21 Wang, M.T., Honn, K.V., Nie, D. Cyclooxygenases, prostanoids, and tumor progression. Cancer Metastasis Rew 26: 525-534, 2007.   DOI   ScienceOn
22 Delgado, A.V., McManus, A.T., Chambers, J.P. Production of tumor necrosis factor-alpha, interleukin 1-beta, interleukin 2, and interleukin 6 by rat leukocyte subpopulations after exposure to substance P. Neuropeptides 37: 355-361, 2007.
23 Kranzhofer R, Schmidt J, Pfeiffer C.A., Hagl S, Libby P, Kubler W. Angiotensin induces inflammatory activation of human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 19: 1623-1629, 1999.   DOI   ScienceOn