Inhibitory Effect of Scolopendra Morsitans L. Ether Extract on Lipopolysaccharide-Induced Inflammatory Response in RAW 264.7 Cells

오공(蜈蚣) 에테르 추출물의 RAW 264.7 cell에서 LPS로 유도된 염증반응 억제 효과

  • Jung, Ho Kyung (Jeonnam Development Institute for Korean Traditional Medicine) ;
  • Cho, Hyun Woo (Jeonnam Development Institute for Korean Traditional Medicine) ;
  • Jung, Won Seok (Jeonnam Development Institute for Korean Traditional Medicine) ;
  • Choi, In Young (Jeonnam Development Institute for Korean Traditional Medicine) ;
  • Cho, Jung Hee (Jeonnam Development Institute for Korean Traditional Medicine) ;
  • Jung, Su Young (Jeonnam Development Institute for Korean Traditional Medicine)
  • 정호경 (전라남도한방산업진흥원) ;
  • 조현우 (전라남도한방산업진흥원) ;
  • 정원석 (전라남도한방산업진흥원) ;
  • 최인영 (전라남도한방산업진흥원) ;
  • 조정희 (전라남도한방산업진흥원) ;
  • 정수영 (전라남도한방산업진흥원)
  • Received : 2012.10.22
  • Accepted : 2013.01.14
  • Published : 2013.02.25

Abstract

It has been reported that Scolopendra morsitans L.(SML) has beneficial effects on human health and diverse diseases. The purpose of this study was to investigate the anti-inflammatory effects of ether extract from Scolopendra morsitans L. on lipopolysaccharide(LPS)-induced inflammatory response. Thus, we examined the inhibitory effect of SML ether fraction on LPS-induced increase of inflammatory mediators(NO, iNOS, COX-2, and $I{\kappa}B{\alpha}$) and pro-inflammatory cytokines(TNF-${\alpha}$) in RAW 264.7 cells. In the present study, SML ether extract itself decreased cell viability in a dose dependent manner(> 100 ${\mu}g/ml$). In addition, LPS increased NO production, iNOS expression and phosphorylation of $I{\kappa}-B{\alpha}$, which were blocked by the treatment of SML ether fraction in a dose dependent manner. Furthermore, the treatment of LPS increased TNF-${\alpha}$ production. However, the pretreatment of SML ether fraction prevented the LPS-induced TNF-${\alpha}$ production in dose dependant manner. Taken together, our results suggest that SML may be a beneficial drug against inflammatory diseases such as sepsis.

Keywords

References

  1. Kim, S.N. Study on genetic analysis and extract cytotoxicity of Scolopenda subspinipes mulitilans L. Koch. MS Thesis. Wonkwang University. p 37, 2005.
  2. 중약대사전편찬위원회, 중약대사전, 서울. 도서출판 정담. pp 3026-3030, 1997.
  3. 이동희, 김호철, 안덕균. 오공의 항고혈압작용에 관한 연구. 대한본초학회지 12(2):39-49, 1997.
  4. 정병태, 장경전, 송춘호, 안창범. 오공수침이 진통 및 진경효과에 미치는 영향. 대한침구학회지 14(2):219-230, 1997.
  5. Choi, Y.K., Lee, D.U., Kim, G.W., Koo, B.S. Antioxidative Effects of Scolopendra subspinipes. The Journal of Oriental Neuropsychiatry 19: 129-142, 2008.
  6. Kim, S.C., Seo, G.Y., Lee, S.W., Park, S.J., Kim, J.H., Ahn, S.H. Hwang, S.Y. Biological Activities of Scolopendrid Pharmacopuncture. Journal of Pharmacopuncture. 13: 5-13, 2010.
  7. Jo, I.J.,, Choi, M.O., Park, M.C., Song, H.J., Park, S.J. Anti-Inflammatory Effect of Aqueous Extract of Scolopendrae Corpus in RAW 264.7 Cells. Kor J Herbology 26(3):23-29, 2011.
  8. Kim, G.S., Seo, U.K., Jeong, J.C. Effects of Scolopendrae corpus on immune response in mice of different ages. Korean J. Orient Int Med 19: 477-490, 1998.
  9. 송인석, 김동현. 오공의 항경련효과. 경희약대논문집. 24: 91-93, 1996.
  10. 오공의 항산화효과에 관한연구, 동의신경정신과학회지 19(3):129-142, 2008.
  11. 홍남두. 오공의 약물학적 연구. 경희약대논문집. 5: 20-27, 1977.
  12. 생약학교재편찬위원회. 생약학. 파주. 동명사. pp 679-680, 2008.
  13. Erwig, L.P., Rees, A.J. Macrophage activation and programming and its role for macrophage function in glomerular inflammation. Kidney Blood Press Res 22(1-2):21-25, 1999. https://doi.org/10.1159/000025905
  14. McDaniel, M.L., Kwon, G., Hill, J.R., Marshall, C.A., Corbett, J.A. Cytokines and nitric oxide in islet inflammation and diabetes. Proc Soc Exp Biol Med 211: 24-32, 1996. https://doi.org/10.3181/00379727-211-43950D
  15. Willeaume, V., Kruys, V., Mijatovic, T., Huez G. Tumor necrosis factor-alpha production induced by viruses and by lipopolysaccharides in macrophages: similarities and differences. J Inflamm 46: 1-12, 1996.
  16. Takeda, K., Kaisho, T., Akira, S. Toll-like receptors. Annu Rev Immunol 21: 335-376, 2003. https://doi.org/10.1146/annurev.immunol.21.120601.141126
  17. Lu, C.N., Yuan, Z.G., Zhang, X.L., Yan, R., Zhao, Y.Q., Liao, M., Chen, J.X. Saikosaponin a and its epimer saikosaponin d exhibit anti-inflammatory activity by suppressing activation of NF-${\kappa}B$ signaling pathway. Int Immunopharmacol 14(1):121-126, 2012. https://doi.org/10.1016/j.intimp.2012.06.010
  18. Kim, D.H., Park, S.J., Jung, J.Y., Kim, S.C., Byun, S.H. Antiinflammatory effects of the aqueous extract of Hwangnyenhaedok-tang in LPS-activated macrophage cells. Kor J Herbol 24: 39-47, 2009.
  19. Park, S.M., Byun, S.H., Kim, Y.W., Cho, I.J., Kim, S.C. Inhibitory effect of Mori Folium ethanol extract on pro-inflammatory mediator in lipopolysaccharide-activated RAW 264.7 cells. Kor. J. Herbology 27(3):31-38, 2012.
  20. La, Sala, A., Gadina, M., Kelsall, B.L. G(i)-protein-dependent inhibition of IL-12 production is mediated by activation of the phosphatidylinositol 3-kinase-protein 3 kinase B/Akt pathway and JNK. J. Immunol 175: 2994-2999, 2005. https://doi.org/10.4049/jimmunol.175.5.2994
  21. Wang, M.T., Honn, K.V., Nie, D. Cyclooxygenases, prostanoids, and tumor progression. Cancer Metastasis Rew 26: 525-534, 2007. https://doi.org/10.1007/s10555-007-9096-5
  22. Delgado, A.V., McManus, A.T., Chambers, J.P. Production of tumor necrosis factor-alpha, interleukin 1-beta, interleukin 2, and interleukin 6 by rat leukocyte subpopulations after exposure to substance P. Neuropeptides 37: 355-361, 2007.
  23. Kranzhofer R, Schmidt J, Pfeiffer C.A., Hagl S, Libby P, Kubler W. Angiotensin induces inflammatory activation of human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 19: 1623-1629, 1999. https://doi.org/10.1161/01.ATV.19.7.1623