• Title/Summary/Keyword: I-${\kappa}B$ phosphorylation

Search Result 243, Processing Time 0.035 seconds

Evaluation of anti-inflammatory effect by regulating NF-κB pathway of Argyreia capitata (Vahl) Choisy extract in LPS-induced RAW 264.7 macrophages (LPS로 유도된 RAW 264.7 대식세포에서 Argyreia capitata (Vahl) Choisy 추출물의 NF-κB pathway 조절을 통한 항염증 효능 평가)

  • Yeum, Ga Hee;So, Bo Ram;Bach, Tran The;Eum, Sang Mi;Jung, Sung Keun
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.3
    • /
    • pp.249-254
    • /
    • 2020
  • Argyreia capitata (Vahl) Choisy is a species of the genus Argyreia. Although many studies have analyzed the biological activity of A. nervosa, A. speciasa, and A. acuta, the anti-inflammatory effect of A. capitata extract (ACE) remains unclear. In this study, we evaluated the anti-inflammatory effect of ACE using lipopolysaccharide (LPS)-induced inflammatory markers in RAW 264.7 cells. We confirmed that the ACE inhibited the LPS-induced NO (nitric oxide) and iNOS (inducible nitric oxide synthase) expression in RAW 264.7 cells. ACE suppressed not only the LPS-induced phosphorylation of IKK, IκB, and p65 but also IL-1β expression. Collectively, these results suggest that ACE is a novel anti-inflammatory agent that suppresses iNOS expression, NO production, and the NF-κB signaling pathways.

Proinflammatory Cytokine and Nitric Oxide Production by Human Macrophages Stimulated with Trichomonas vaginalis

  • Han, Ik-Hwan;Goo, Sung-Young;Park, Soon-Jung;Hwang, Se-Jin;Kim, Yong-Seok;Yang, Michael Sungwoo;Ahn, Myoung-Hee;Ryu, Jae-Sook
    • Parasites, Hosts and Diseases
    • /
    • v.47 no.3
    • /
    • pp.205-212
    • /
    • 2009
  • Trichomonas vaginalis commonly causes vaginitis and perhaps cervicitis in women and urethritis in men and women. Macrophages are important immune cells in response to T. vaginalis infection. In this study, we investigated whether human macrophages could be involved in inflammation induced by T. vaginalis. Human monocyte-derived macrophages (HMDM) were co-cultured with T. vaginalis. Live, opsonized-live trichomonads, and T. vaginalis Iysates increased proinflammatory cytokines, such as TNF-${\alpha}$, IL-$1{\beta}$, and IL-6 by HMDM. The involvement of nuclear factor (NF)-${\kappa}B$ signaling pathway in cytokine production induced by T. vaginalis was confirmed by phosphorylation and nuclear translocation of p65 NF-${\kappa}B$. In addition, stimulation with live T. vaginalis induced marked augmentation of nitric oxide (NO) production and expression of inducible NO synthase (iNOS) levels in HMDM. However, trichomonad-induced NF-${\kappa}B$ activation and TNF-${\alpha}$ production in macrophages were significantly inhibited by inhibition of iNOS levels with L-NMMA (NO synthase inhibitor). Moreover, pretreatment with NF-${\kappa}B$ inhibitors (PDTC or Bay11-7082) caused human macrophages to produce less TNF-${\alpha}$. These results suggest that T. vaginalis stimulates human macrophages to produce proinflammatory cytokines, such as IL-1, IL-6, and TNF-${\alpha}$, and NO. In particular, we showed that T. vaginalis induced TNF-${\alpha}$ production in macrophages through NO-dependent activation of NF-${\kappa}B$, which might be closely involved in inflammation caused by T. vaginalis.

Anti-inflammatory Effect of Broccoli Leaf Hexane Fraction in LPS-stimulated RAW264.7 Cells

  • Kim, Mee-Kyung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.1
    • /
    • pp.175-181
    • /
    • 2022
  • In this study, we tested the anti-inflammatory effects of broccoli leaf hexane fraction to confirm the applicability as a functional material in food and cosmetics. This sample was extracted using 70% ethanol from Broccoli leaf and then fractionated with hexane. The production of pro-inflammatory cytokines (TNF-α, IL-4, IL-6, IL-1β), protein expression of iNOS and COX-2, phosphorylation of MAPKs (ERK, JNK, p38) and NF-κB with broccoli leaf hexane fraction were assayed on LPS-stimulated RAW264.7 cells. The broccoli leaf hexane fraction inhibited the secretion of pro-inflammatory cytokines and protein expression of iNOS and COX-2. Also, the broccoli leaf hexane fraction reduced the phosphorylation of MAPKs and NF-κB. Therefore, it is considered that th broccoli leaf hexane fraction has the potential to be used as a natural anti-inflammatory material in food and cosmetics. In the future, it is considered necessary to study the anti-inflammatory mechanism and identification of major bioactive substances.

Anti-inflammatory Effects of Scrophularia Koraiensis Nakai via NF-κB and MAPK Signaling Pathways in LPS-induced Macrophages

  • Da-Yoon Lee;So-Yeon Han;Hye-Jeong Park;Seo-Yoon Park;Jun-Hwan Jeong;Yoon-Jae Kwon;Tae-Won Jang;Jae-Ho Park
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2022.09a
    • /
    • pp.107-107
    • /
    • 2022
  • Scrophularia koraiensis Nakai is widely used to remedy fever, edema, and neuritis. S. koraiensis has harpagoside and angoroside C, these compounds have been reported to alleviate inflammation, rheumatic diseases, and analgesic stimulation. We evaluated the anti-inflammatory effects of the ethanol extract of S. koraiensis (SKE) in lipopolysaccharides (LPS)-induced macrophages. At cellular levels, SKE decreased the production of nitric oxide (NO), the expression of inducible nitric oxide synthase (iNOS), and cytokines (IL-1b, TNF-a, and IL-6) under the LPS stimulation. SKE inhibited the phosphorylation of nuclear transcription factor-kappa B (NF-κB) p65 and its inhibitor (IκB-α). In addition, SKE suppressed the phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 in the mitogen-activated protein kinase (MAPK) pathway. In conclusion, SKE could be considered a potential resource for attenuating inflammation response and it may be utilized in the material for cosmetics, food additives, and tea.

  • PDF

Anti-inflammatory effect of Porphyra yezoensis ethanol extract through the inhibited NF-κB and JNK activation in LPS-PG stimulated HGF-1 cells (사람 치은섬유모세포에서 NF-κB와 JNK 활성 억제를 통한 돌김 에탄올 추출물의 항염증 효과)

  • Park, Chung-Mu;Yoon, Hyun-Seo
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.12
    • /
    • pp.81-88
    • /
    • 2018
  • Human gingival fibroblast (HGF) is the main cell type existed in periodontium and produces a variety of inflammatory mediators by external stimuli. In this study, the anti-inflammatory activity of Porphyra yezoensis ethanol extract (PYEE) on LPS-PG lipopolysaccharide from Porphyromonas gingivalis activated HGF-1 cell. Up-regulated iNOS and COX-2 expressions by LPS-PG were significantly attenuated by PYEE treatment in a dose-dependent manner. In addition, activated nuclear factor $(NF)-{\kappa}B$ was also dose-dependently inhibited by PYEE treatment. Among upstream signaling molecules, PYEE treatment inhibited phosphorylation of c-Jun $NH_2$-terminal kinase (JNK) but did not give any effect on other molecules. On the other hand, one of phase II enzymes, NAD(P)H:quinone dehydrogenase (NQO)-1, was analyzed due to its anti-inflammatory activity, which was upregulated by PYEE treatment. Consequently, PYEE could be candidates for the prevention and treatment of periodontal diseases.

Effect of Forsythiae Fructus ethanol extract on inflammatory cytokine production and cellular signaling pathways in mouse macrophages (연교(連翹) 에탄올 추출물의 대식세포의 염증성 사이토카인 합성과 신호전달에 대한 조절)

  • Nam, Jung-Bum;Lee, Mi-Hwa;Choi, Ho-Young;Sohn, Nak-Won;Kang, Hee
    • The Korea Journal of Herbology
    • /
    • v.27 no.1
    • /
    • pp.59-64
    • /
    • 2012
  • Objective : This study was performed to evaluate the effect of Forsythiae Fructus (FF) ethanol extract on inflammatory cytokine production and its underlying mechanisms in mouse macrophages. Methods : Peritoneal macrophages from thioglycollate medium-injected mice were cultured and stimulated with lipopolysaccharide(LPS) or LPS/interferon(IFN)-${\gamma}$ for cytokine measurement and cellular signaling molecule analysis. Results : FF ethanol extract decreased the levels of secreted tumor necrosis factor(TNF)-${\alpha}$ and interleukin(IL)-6 in IFN-${\gamma}$/LPS-stimulated cells in a concentration-dependent manner. FF extract reduced IFN-${\gamma}$/LPS-induced STAT1 phosphorylation and LPS-induced p38 and JNK activation, but not ERK1/2 activity. The extract also inhibited LPS-induced $I{\kappa}B{\alpha}$ degradation through suppression of $I{\kappa}B{\alpha}$ kinase. Conclusions : These results suggest that FF ethanol extract affects the production of TNF-${\alpha}$ and IL-6 through inhibition of activation of STAT-1, $I{\kappa}B{\alpha}$, p38, and JNK.

A Novel Synthetic Compound, YH-1118, Inhibited LPS-Induced Inflammatory Response by Suppressing IκB Kinase/NF-κB Pathway in Raw 264.7 Cells

  • Yun, Chang Hyun;Jang, Eun Jung;Kwon, Soon Cheon;Lee, Mee-Young;Lee, Sangku;Oh, Sei-Ryang;Lee, Hyeong-Kyu;Ahn, Kyung-Seop;Lee, Ho-Jae
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.7
    • /
    • pp.1047-1055
    • /
    • 2015
  • For the search of a potent first-in-class compound to inactivate macrophages responsible for inflammatory responses, in the present study, we investigated the anti-nflammatory effects of YH-1118, a novel synthetic compound, in a lipopolysaccharide (LPS)-stimulated mouse macrophage cell line, Raw 264.7. YH-1118 inhibited LPS-induced nitric oxide (NO) production and inducible NO synthase (iNOS) expression at both the protein and mRNA levels. The suppression of LPS-induced iNOS expression by YH-1118 was mediated via nuclear factor kappa B (NF-κB), but not activator protein-1 (AP-1) transcription factor. This was supported by the finding that YH-1118 attenuated the phosphorylation of inhibitor of κBα (IκBα) and nuclear translocation and DNA binding activity of NF-κB. Through the mechanisms that YH-1118 inhibited the activation of IκB kinases (IKKs), upstream activators of NF-κB, or p38 MAPK, YH-1118 significantly suppressed LPS-induced production of pro-inflammatory cytokines, tumor necrosis factor-α, interleukin-1β (IL-1β), and IL-6 (p < 0.05). In conclusion, our results suggest that YH-1118 inhibits LPS-induced inflammatory responses by blocking IKK and NF-κB activation in macrophages, and may be a therapeutic candidate for the treatment of various inflammatory diseases.

Anti-Inflammatory Effect of Biji (Soybean curd residue) on LPS-Stimulated RAW264.7 Cells (마우스 RAW264.7 세포에 대한 비지 추출물의 항염증 활성)

  • Park, Su Bin;Song, Hun Min;Kim, Ha Na;Park, Gwang Hun;Son, Ho-Jun;Um, Yurry;Park, Ji Ae;Jeong, Jin Boo
    • Korean Journal of Plant Resources
    • /
    • v.31 no.2
    • /
    • pp.117-123
    • /
    • 2018
  • In this study, we evaluated anti-inflammatory effect of biji in LPS-stimulated RAW264.7 cells. Biji inhibited the generation of NO and $PGE_2$ through the suppression of iNOS and COX-2 expression. In addition, biji attenuated the expression of TNF-${\alpha}$ and IL-$1{\beta}$ induced by LPS. Biji blocked LPS-mediated $I{\kappa}B-{\alpha}$ degradation and subsequently inhibited p65 nucleus accumulation in RAW264.7 cells, which indicates that biji inhibits NF-${\kappa}B$ signaling. In addition, biji suppressed p38 phosphorylation induced by LPS. Our results suggests that biji may exert anti-inflammatory activity through blocking the generation of the inflammatory mediators such as NO, $PGE_2$, iNOS, COX-2, TNF-${\alpha}$ and IL-$1{\beta}$ via the inhibiting the activation of NF-${\kappa}B$ and p38. From these findings, biji has potential to be a candidate for the development of chemoprevention or therapeutic agents for inflammatory diseases.

Ethyl Acetate Fraction of Cnidium monnieri(L). Cussion Suppresses PAM plus A23187-induced Inflammation Reaction through Blockade of NF-κB and MAPK activation (벌사상자 Ethyl Acetate 분획물의 항염증활성연구)

  • Kang, Ok-Hwa;Kim, Sang-Young;Kwon, Dong-Yeul
    • Korean Journal of Pharmacognosy
    • /
    • v.46 no.3
    • /
    • pp.195-202
    • /
    • 2015
  • Cnidium monnieri (L). Cussion is used as a tonic agent in traditional oriental medicine. However, the molecular mechanism of mast cell-mediated anti-inflammatory modulation has not been fully understood. The aim of the present study was to demonstrate the effects of Cnidium monnieri (L). Cussion eathyl acetate fraction on the expression of pro-inflammatory cytokines, as well as to elucidate its mechanism of action in the human mast cell line (HMC-1). Cells were stimulated with phorbol 12-myristate 13-acetate (PMA) plus A23187 in the presence or absence of Cnidium monnieri (L). Cussion eathyl acetate fraction. Cnidium monnieri (L). Cussion eathyl acetate fraction significantly inhibited the PMA plus A23187-induction of inflammatory cytokines such as tumor necrosis factor (TNF)-$\alpha$, interleukin (IL)-6 and IL-8. Moreover, EtOAc fraction attenuated cyclooxygenase (COX)-2 expression. In activated HMC-1 cells, phosphorylation of extra-signal response kinase (ERK) 1/2 decreased after treatment with EtOAc fraction. Moreover EtOAc fraction inhibited PMA plus A23187-induced nuclear factor (NF)-${\kappa}B$ activation, $I{\kappa}B$ degradation. EtOAc fraction suppressed the expression of TNF-$\alpha$, IL-6, IL-8 through a decrease in the ERK 1/2, as well as activation of NF-${\kappa}B$. These results indicated that Cnidium monnieri (L). Cussion EtOAc fraction exerted a regulatory effect on inflammatory reactions mediated by mast cells.

Down-modulation of Bis reduces the invasive ability of glioma cells induced by TPA, through NF-κB mediated activation of MMP-9

  • Lee, Young Dae;Cui, Mei Nu;Yoon, Hye Hyeon;Kim, Hye Yun;Oh, Il-Hoan;Lee, Jeong-Hwa
    • BMB Reports
    • /
    • v.47 no.5
    • /
    • pp.262-267
    • /
    • 2014
  • Bcl-2 interacting cell death suppressor (Bis) has been shown to have anti-apoptotic and anti-stress functions. Recently, increased Bis expression was reported to correlate with glioma aggressiveness. Here, we investigated the effect of Bis knockdown on the acquisition of the invasive phenotype of A172 glioma cells, induced by 12-O-Tetradecanoylphorbol-3-acetate (TPA), using a Transwell assay. Bis knockdown resulted in a significant decrease in the migration and invasion of A172 cells. Furthermore, Bis knockdown notably decreased TPA-induced matrix metalloproteinase-9 (MMP-9) activity and mRNA expression, as measured by zymography and quantitative real time PCR, respectively. A luciferase reporter assay indicated that Bis suppression significantly down-regulated NF-${\kappa}B$-driven transcription. Finally, we demonstrated that the rapid phosphorylation and subsequent degradation of $I{\kappa}B-{\alpha}$ induced by TPA was remarkably delayed by Bis knockdown. These results suggest that Bis regulates the invasive ability of glioma cells elicited by TPA, by modulating NF-${\kappa}B$ activation, and subsequent induction of MMP-9 mRNA.