• Title/Summary/Keyword: I/R injury

Search Result 108, Processing Time 0.026 seconds

Alteration of Nitric Oxide Synthase and Guanylyl Cyclase Activity in Rats with Ischemia/Reperfusion Renal Injury

  • Bae, Eun-Hui;Kim, Soo-Wan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.6
    • /
    • pp.337-341
    • /
    • 2006
  • The present study was designed to investigate the protein expression of nitric oxide synthase (NOS) and guanylyl cyclase (GC) activity in ischemia/perfusion (I/R) renal injury in rats. Renal I/R injury was experimentally induced by clamping the both renal pedicle for 40 min in Sprague-Dawley male rats. The renal expression of NOS isoforms was determined by Western blot analysis, and the activity of guanylyl cyclase was determined by the amount of guanosine 3', 5'-cyclic monophosphate (cGMP) formed in response to sodium nitroprusside (SNP), NO donor. I/R injury resulted in renal failure associated with decreased urine osmolality. The expression of inducible NOS (iNOS) was increased in I/R injury rats compared with controls, while endothelial NOS (eNOS) and neuronal NOS (nNOS) expression was decreased. The urinary excretion of NO metabolites was decreased in I/R injury rats. The cGMP production provoked by SNP was decreased in the papilla, but not in glomerulus. These results indicate an altered regulation of NOS expression and guanylyl cyclase activity in I/R-induced nephropathy.

Endotoxin-induced renal tolerance against ischemia and reperfusion injury is removed by iNOS, but not eNOS, gene-deletion

  • Kim, Jee-In;Jang, Hee-Seong;Park, Kwon-Moo
    • BMB Reports
    • /
    • v.43 no.9
    • /
    • pp.629-634
    • /
    • 2010
  • Endotoxin including lipopolysaccharide (LPS) confers organ tolerance against subsequent challenge by ischemia and reperfusion (I/R) insult. The mechanisms underlying this powerful adaptive defense remain to be defined. Therefore, in this study we attempted to determine whether nitric oxide (NO) and its associated enzymes, inducible NOS (iNOS) and endothelial NOS (eNOS, a constitutive NOS), are associated with LPS-induced renal tolerance against I/R injury, using iNOS (iNOS knock-out) or eNOS (eNOS knock-out) gene-deleted mice. A systemic low dose of LPS pretreatment protected kidney against I/R injury. LPS treatment increased the activity and expression of iNOS, but not eNOS, in kidney tissue. LPS pretreatment in iNOS, but not eNOS, knock-out mice did not protect kidney against I/R injury. In conclusion, the kidney tolerance to I/R injury conferred by pretreatment with LPS is mediated by increased expression and activation of iNOS.

Effect of gemigliptin on cardiac ischemia/reperfusion and spontaneous hypertensive rat models

  • Nam, Dae-Hwan;Park, Jinsook;Park, Sun-Hyun;Kim, Ki-Suk;Baek, Eun Bok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.5
    • /
    • pp.329-334
    • /
    • 2019
  • Diabetes is associated with an increased risk of cardiovascular complications. Dipeptidyl peptidase-4 (DPP-IV) inhibitors are used clinically to reduce high blood glucose levels as an antidiabetic agent. However, the effect of the DPP-IV inhibitor gemigliptin on ischemia/reperfusion (I/R)-induced myocardial injury and hypertension is unknown. In this study, we assessed the effects and mechanisms of gemigliptin in rat models of myocardial I/R injury and spontaneous hypertension. Gemigliptin (20 and 100 mg/kg/d) or vehicle was administered intragastrically to Sprague-Dawley rats for 4 weeks before induction of I/R injury. Gemigliptin exerted a preventive effect on I/R injury by improving hemodynamic function and reducing infarct size compared to the vehicle control group. Moreover, administration of gemigliptin (0.03% and 0.15%) powder in food for 4 weeks reversed hypertrophy and improved diastolic function in spontaneously hypertensive rats. We report here a novel effect of the gemigliptin on I/R injury and hypertension.

MicroRNA-206 Protects against Myocardial Ischaemia-Reperfusion Injury in Rats by Targeting Gadd45β

  • Zhai, Changlin;Qian, Qang;Tang, Guanmin;Han, Bingjiang;Hu, Huilin;Yin, Dong;Pan, Haihua;Zhang, Song
    • Molecules and Cells
    • /
    • v.40 no.12
    • /
    • pp.916-924
    • /
    • 2017
  • MicroRNAs are widely involved in the pathogenesis of cardiovascular diseases through regulating gene expression via translational inhibition or degradation of their target mRNAs. Recent studies have indicated a critical role of microRNA-206 in myocardial ischaemia-reperfusion (I/R) injury. However, the function of miR-206 in myocardial I/R injury is currently unclear. The present study was aimed to identify the specific role of miR-206 in myocardial I/R injury and explore the underlying molecular mechanism. Our results revealed that the expression level of miR-206 was significantly decreased both in rat I/R group and H9c2 cells subjected to hypoxia/reoxygenation (H/R) compared with the corresponding control. Overexpression of miR-206 observably decreased infarct size and inhibited the cardiomyocyte apoptosis induced by I/R injury. Furthermore, bioinformatics analysis, luciferase activity and western blot assay proved that $Gadd45{\beta}$ (growth arrest DNA damage-inducible gene $45{\beta}$) was a direct target gene of miR-206. In addition, the expression of pro-apoptotic-related genes, such as p53, Bax and cleaved caspase3, was decreased in association with the down-regulation of $Gadd45{\beta}$. In summary, this study demonstrates that miR-206 could protect against myocardial I/R injury by targeting $Gadd45{\beta}$.

Curcumin protects against the intestinal ischemia-reperfusion injury: involvement of the tight junction protein ZO-1 and TNF-α related mechanism

  • Tian, Shuying;Guo, Ruixue;Wei, Sichen;Kong, Yu;Wei, Xinliang;Wang, Weiwei;Shi, Xiaomeng;Jiang, Hongyu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.2
    • /
    • pp.147-152
    • /
    • 2016
  • Present study aimed to investigate the effect of curcumin-pretreatment on intestinal I/R injury and on intestinal mucosa barrier. Thirty Wistar rats were randomly divided into: sham, I/R, and curcumin groups (n=10). Animals in curcumin group were pretreated with curcumin by gastric gavage (200 mg/kg) for 2 days before I/R. Small intestine tissues were prepared for Haematoxylin & Eosin (H&E) staining. Serum diamine oxidase (DAO) and tumor necrosis factor (TNF)-${\alpha}$ levels were measured. Expression of intestinal TNF-${\alpha}$ and tight junction protein (ZO-1) proteins was detected by Western blot and/or immunohistochemistry. Serum DAO level and serum and intestinal TNF-${\alpha}$ leves were significantly increased after I/R, and the values were markedly reduced by curcumin pretreatment although still higher than that of sham group (p<0.05 or p<0.001). H&E staining showed the significant injury to intestinal mucosa following I/R, and curcumin pretreatment significantly improved the histological structure of intestinal mucosa. I/R insult also induced significantly down-regulated expression of ZO-1, and the effect was dramatically attenuated by curcumin-pretreatment. Curcumin may protect the intestine from I/R injury through restoration of the epithelial structure, promotion of the recovery of intestinal permeability, as well as enhancement of ZO-1 protein expression, and this effect may be partly attributed to the TNF-${\alpha}$ related pathway.

Ischemia/reperfusion Lung Injury Increases Serum Ferritin and Heme Oxygenase-1 in Rats

  • Park, Yoon-Yub
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.3
    • /
    • pp.181-187
    • /
    • 2009
  • Intestinal ischemia/reperfusion (I/R) is one of common causes of acute lung injury (ALI). Early and accurate diagnosis of patients who are like to develop serious acute respiratory distress syndrome (ARDS) would give a therapeutic advantage. Ferritin and heme oxygenase-1 (HO-1) are increased by oxidative stress and are potential candidates as a predictive biomarker of ARDS. However, the mechanisms responsible for the increases of ferritin and HO-1, and their relationship to ALI, are unclear. In order to elucidate the interactions between ferritin and HO-1, we studied the changes in ferritin and HO-1 levels in serum and bronchoalveolar lavage (BAL) fluid after intestinal I/R injury in rats. Leukocyte number and protein contents in BAL fluid were elevated following I/R, and the increases were attenuated by mepacrine pretreatment. Both serum ferritin and HO-1 concentrations were progressively elevated throughout the 3 h observation period. Mepacrine pretreatment attenuated the increase of serum and BAL fluid ferritin concentrations, but did not suppress the increase of serum HO-1. Moreover, BAL fluid HO-1 levels did not change after I/R or after mepacrine pretreated I/R compared with sham rats. Unlike ferritin, HO-1 levels are not exactly matched with the ALI. Therefore, there might be a different mechanism between the changes of ferritin and HO-1 in intestinal I/R-induced ALI model.

PAF Contributes to Intestinal Ischemia/Reperfusion-Induced Acute Lung Injury through Neutrophilic Oxidative Stress

  • Lee, Young-Man;Park, Yoon-Yub
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.4
    • /
    • pp.405-414
    • /
    • 1999
  • The role of platelet-activating factor (PAF) was investigated in intestinal ischemia/reperfusion (I/R) induced acute lung injury associated with oxidative stress. To induce acute lung injury following intestinal I/R, superior mesenteric arteries were clamped with bulldog clamp for 60 min prior to the 120 min reperfusion in Sprague-Dawley rats. Acute lung injury by intestinal I/R was confirmed by the measurement of lung leak index and protein content in bronchoalveolar lavage (BAL) fluid. Lung leak and protein content in BAL fluid were increased after intestinal I/R, but decreased by WEB 2086, the PAF receptor antagonist. Furthermore, the pulmonary accumulation of neutrophils was evaluated by the measurement of lung myeloperoxidase (MPO) activity and the number of neutrophils in the BAL fluid. Lung MPO activity and the number of neutrophils were increased (p<0.001) by intestinal I/R and decreased by WEB 2086 significantly. To confirm the oxidative stress induced by neutrophilic respiratory burst, gamma glutamyl transferase (GGT) activity was measured. Lung GGT activity was significantly elevated after intestinal I/R (p<0.001) but decreased to the control level by WEB 2086. On the basis of these experimental results, phospholipase $A_2\;(PLA_2),$ lysoPAF acetyltransferase activity and PAF contents were measured to verify whether PAF is the causative humoral factor to cause neutrophilic chemotaxis and oxidative stress in the lung following intestinal I/R. Intestinal I/R greatly elevated $PLA_2$ activity in the lung as well as intestine (p<0.001), whereas WEB 2086 decreased $PLA_2$ activity significantly (p<0.001) in both organs. LysoPAF acetyltransferase activity, the PAF remodelling enzyme, in the lung and intestine was increased significantly (p<0.05) also by intestinal I/R. Accordingly, the productions of PAF in the lung and intestine were increased (p<0.001) after intestinal I/R compared with sham rats. The level of PAF in plasma was also increased (p<0.05) following intestinal I/R. In cytochemical electron microscopy, the generation of hydrogen peroxide was increased after intestinal I/R in the lung and intestine, but decreased by treatment of WEB 2086 in the lung as well as intestine. Collectively, these experimental results indicate that PAF is the humoral mediator to cause acute inflammatory lung injury induced by intestinal I/R.

  • PDF

Effect of Aspirin on the Acute Lung Injury Induced by Intestinal Ischemia/Reperfusion. (장의 허혈-재관류로 유도된 급성 폐손상에서 아스피린의 작용)

  • Park, Yoon-Yub
    • Journal of Life Science
    • /
    • v.19 no.6
    • /
    • pp.818-824
    • /
    • 2009
  • The mechanisms responsible for ischemia/reperfusion (I/R) injury have direct or indirect relevance to clinical lung injury after severe shock, cardiopulmonary bypass, and transplantation. This study investigated the effects of aspirin on intestinal I/R-induced acute lung injury (ALI) in rats. Lipopolysaccharide (LPS) induced cyclooxygenase-2 (COX-2) expression in A549 and RAW264.7 cells. RAW264.7 macrophages had shown greater expression of COX-2 than A549 cells. In addition, the NADPH oxidase inhibitor apocynin and p38 MAPK inhibitor SB203580 attenuated LPS-stimulated COX-2 expression. To induce ALI, intestinal ischemia was performed for 60 min prior to the 4 hr reperfusion by clamping the superior mesenteric artery in Sprague-Dawley rats. In order to test and compare the effect of non-specific COX inhibitor aspirin with the effect of mepacrine, a well known phospholipase$A_{2}$ inhibitor, rats were divided into 4 groups: Sham, I/R, Mepa+I/R (mepacrine, 60 mg/kg, i.p.), ASA+I/R (aspirin, 10 mg/kg, i.p.). In the present investigation, myeloperoxidase activities in the lung and intestinal tissues were increased by I/R. These changes were reduced by single pretreatment of mepacrine (60 mg/kg, i.p.) or aspirin (10 mg/kg, i.p.) 30 min before I/R. Structural studies demonstrated that the tissue injuries in the lung and intestine after I/R were also attenuated by the pretreatment of mepacrine or aspirin. These results suggest that I/R-induced ALI is mediated, in part, by the activation of COX. In addition, pretreatment of aspirin might be helpful for the prevention of ALI in ARDS-prone patients. In addition, the p38 MAPK inhibitor and apocynin also might be helpful to ALI through the inhibition of COX-2 expression.

Rac1 inhibition protects the kidney against kidney ischemia/reperfusion through the inhibition of macrophage migration

  • You Ri Park;Min Jung Kong;Mi Ra Noh;Kwon Moo Park
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.3
    • /
    • pp.257-265
    • /
    • 2023
  • Kidney ischemia/reperfusion (I/R) injury, a common cause of acute kidney injury (AKI), is associated with the migration of inflammatory cells into the kidney. Ras-related C3 botulinum toxin substrate 1 (Rac1), a member of the Rho family of small GTPase, plays an important role in inflammatory cell migration by cytoskeleton rearrangement. Here, we investigated the role of Rac1 on kidney I/R injury and macrophage migration. Male mice were subjected to either 25 min of bilateral ischemia followed by reperfusion (I/R) or a sham operation. Some mice were administrated with either NSC23766, an inhibitor of Rac1, or 0.9% NaCl (vehicle). Kidney damage and Rac1 activity and expression were measured. The migration and lamellipodia formation of RAW264.7 cells, mouse monocyte/macrophage, induced by monocyte chemoattractant protein-1 (MCP-1, a chemokine) were determined using transwell migration assay and phalloidin staining, respectively. In sham-operated kidneys, Rac1 was expressed in tubular cells and interstitial cells. In I/R-injured kidneys, Rac1 expression was decreased in tubule cells in correlation with the damage of tubular cells, whereas Rac1 expression increased in the interstitium in correlation with an increased population of F4/80 cells, monocytes/macrophages. I/R increased Rac1 activity without changing total Rac1 expression in the whole kidney lysates. NSC23766 administration blocked Rac1 activation and protected the kidney against I/R-induced kidney damage and interstitial F4/80 cell increase. NSC23766 suppressed monocyte MCP-1-induced lamellipodia and filopodia formation and migration of RAW 264.7 cells. These results indicate Rac1 inhibition protects the kidney against I/R via inhibition of monocytes/macrophages migration into the kidney.

Dendropanax morbifera Extract Protects Cardiomyocytes against Hypoxia/Reoxygenation Injury by Inhibition of Reactive Oxygen Species Generation and Calcium Perturbation

  • Lim, Leejin;Ju, Sujin;Song, Heesang
    • Natural Product Sciences
    • /
    • v.25 no.2
    • /
    • pp.136-142
    • /
    • 2019
  • Ischemia/reperfusion-induced myocardial injury is the main cause of acute myocardial infarction. Dendropanax morbifera $L{\acute{e}}veille$ has been used in traditional medicines for the treatment of various diseases such as headache, infectious diseases, and general debility. However, the effect of extract from D. morbifera (EDM) on myocardial ischemic injury is still unknown. In this study, the effects of EDM on neonatal rat cardiomyocytes with hypoxia/reoxygenation (H/R) injury were investigated. The viability of cardiomyocytes with H (30 min)/R (1 h) decreased; however, treatment with EDM significantly inhibited H/R injury-induced cardiomyocyte death. Further, we observed that reactive oxygen species (ROS) generation and intracellular calcium concentration ($Ca^{2+}{_i}$) were significantly reduced in EDM-treated cardiomyocytes compared with that in H/R-injured positive control. In addition, western blotting results showed that EDM attenuated abnormal changes of RyR2 and SERCA2a genes in hypoxic cardiomyocytes. These results suggest that EDM ameliorates ROS generation and $Ca^{2+}{_i}$ homeostasis to prevent dysregulation of calcium regulatory proteins in the heart, thereby exerting cardioprotective effects and reducing hypoxia-induced cardiomyocyte damage, which verifies the potential use of EDM as a new therapeutic agent for the treatment of myocardial ischemic injury.