DOI QR코드

DOI QR Code

Effect of Aspirin on the Acute Lung Injury Induced by Intestinal Ischemia/Reperfusion.

장의 허혈-재관류로 유도된 급성 폐손상에서 아스피린의 작용

  • Park, Yoon-Yub (Department of Physiology, School of Medicine, Catholic University of Daegu)
  • 박윤엽 (대구가톨릭대학교 의과대학 생리학교실)
  • Published : 2009.06.30

Abstract

The mechanisms responsible for ischemia/reperfusion (I/R) injury have direct or indirect relevance to clinical lung injury after severe shock, cardiopulmonary bypass, and transplantation. This study investigated the effects of aspirin on intestinal I/R-induced acute lung injury (ALI) in rats. Lipopolysaccharide (LPS) induced cyclooxygenase-2 (COX-2) expression in A549 and RAW264.7 cells. RAW264.7 macrophages had shown greater expression of COX-2 than A549 cells. In addition, the NADPH oxidase inhibitor apocynin and p38 MAPK inhibitor SB203580 attenuated LPS-stimulated COX-2 expression. To induce ALI, intestinal ischemia was performed for 60 min prior to the 4 hr reperfusion by clamping the superior mesenteric artery in Sprague-Dawley rats. In order to test and compare the effect of non-specific COX inhibitor aspirin with the effect of mepacrine, a well known phospholipase$A_{2}$ inhibitor, rats were divided into 4 groups: Sham, I/R, Mepa+I/R (mepacrine, 60 mg/kg, i.p.), ASA+I/R (aspirin, 10 mg/kg, i.p.). In the present investigation, myeloperoxidase activities in the lung and intestinal tissues were increased by I/R. These changes were reduced by single pretreatment of mepacrine (60 mg/kg, i.p.) or aspirin (10 mg/kg, i.p.) 30 min before I/R. Structural studies demonstrated that the tissue injuries in the lung and intestine after I/R were also attenuated by the pretreatment of mepacrine or aspirin. These results suggest that I/R-induced ALI is mediated, in part, by the activation of COX. In addition, pretreatment of aspirin might be helpful for the prevention of ALI in ARDS-prone patients. In addition, the p38 MAPK inhibitor and apocynin also might be helpful to ALI through the inhibition of COX-2 expression.

급성 폐손상시 아스피린이 나타내는 염증 억제작용의 기전을 이해하기 위하여 쥐에서 장 허혈-재관류에 의한 급성 폐손상을 유발하여 phospholipase $A_{2}$ 억제제인 mepacrine과 아스피린의 효과를 비교하였다. 내독소 처치시 A549 세포와 RAW264.7 세포에서 cyc1ooxygenase-2 (COX-2)의 발현이 증가했는데, RAW264.7 세포의 반응이 더 크게 나타났다. 장의 허혈-재관류에 의해 장관 및 폐장조직에서 myeloperoxidase 활성도가 증가하여 염증성 호중구의 침윤이 증가했음을 보여 주었다. 조직 소견상에서도 조직 손상과 염증세포의 침윤이 관찰되었으며, 이는 아스피린 또는 mepacrine 전처치 시 억제 되었다. NADPH oxidase 억제작용이 있는 apocynin과 p38 MAPK 억제제인 SB203580은 A549 세포와 RAW264.7 세포의 LPS에 의한 COX-2 발현을 억제시켰으며 RAW264.7 세포에서 더 크게 억제되었다. 이상의 결과를 통해서 아스피린이 급성 폐손상의 예방목적으로 사용될 수 있다고 보여지며, RAW264.7 세포와 A549 세포에서 COX-2 발현은 다른 특성을 보여서 다른 조절기전이 있을 것으로 생각된다.

Keywords

References

  1. Amann, R. and B. A. Peskar. 2002. Anti-inflammatory effects of aspirin and sodium salicylate. Eur. J. Pharmacol. 447, 1-9 https://doi.org/10.1016/S0014-2999(02)01828-9
  2. Ashbaugh, D. G., D. B. Bigelow, T. L. Petty, and B. E. Levine. 1967. Acute respiratory distress syndrome in adults. Lancet 2, 319-323
  3. Awtry, E. H. and J. Loscalzo. 2000. Aspirin. Circulation 101, 1206-1218 https://doi.org/10.1161/01.CIR.101.10.1206
  4. Barbieri, S. S., V. Cavalca, S. Eligini, M. Brambilla, A. Caiani, E. Tremoli, and S. Colli. 2004. Apocynin prevents cyclooxygenase 2 expression in human monocytes through NADPH oxidase and glutathione redox-dependent mechanisms. Free Radic. Biol. Med. 37, 156-165
  5. Connelly, K. G. and J. E. Repine. 1997. Markers for predicting the development of acute respiratory distress syndrome. Annu. Rev. Med. 48, 429-445 https://doi.org/10.1146/annurev.med.48.1.429
  6. Delclaux, C., S. Rezaiguia-Delclaux, C. Delacourt, C. Brun-Buisson, C. Lafuma, and A. Harf. 1997. Alveolar neutrophils in endotoxin-induced and bacteria induced acute lung injury in rats. Am. J. Physiol. 273, L104-L112
  7. Dodd-O, J. M. and D. B. Pearse. 2000. Effect of the NADPH oxidase inhibitor apocynin on ischemia-reperfusion lung injury. Am. J. Physiol. 279, H303-H312
  8. Fukunaga, K., P. Kohli, C. Bonnans, L. E. Fredenburgh, and B. D. Levy. 2005. Cyclooxygenase 2 plays a pivotal role in the resolution of acute lung injury. J. Immunol. 174, 5033-5039 https://doi.org/10.1096/fj.02-1078fje
  9. Gilroy, D. W., A. Tomlinson, and D. A. Willoughby. 1998. Differential effects of inhibitors of cyclooxygenase (cyclooxygenase 1 and cyclooxygenase 2) in acute inflammation. Eur. J. Pharmacol. 355, 211-217 https://doi.org/10.1016/S0014-2999(98)00508-1
  10. Gilroy, D. W., P. R. Colville-Nash, D. Willis, J. Chivers, M. J. Paul-Clark, and D. A. Willoughby. 1999. Inducible cyclooxygenase may have anti-inflammatory properties. Nat. Med. 5, 698-701 https://doi.org/10.1038/9550
  11. Goldblum, S. E., K. M. Wu, and M. Jay. 1991. Lung myeloperoxidase as a measure of leukostasis in rabbit. J. Appl. Physiol. 59, 1978-1985
  12. Hartel, C., J. von Puttkamer, F. Gallner, T. Strunk, and C. Schultz. 2004. Dose-dependent immunomodulatory effects of acetylsalicylic acid and indomethacin in human whole blood: potential role of cyclooxygenase-2 inhibition. Scand. J. Immunol. 60, 412-420 https://doi.org/10.1111/j.0300-9475.2004.01481.x
  13. Hougee, S., A. Hartog, A. Sanders, Y. M. Graus, M. A. Hoijer, J. Garssen, W. B. van den Berg, H. M. van Beuningen, and H. F. Smit. 2006. Oral administration of the NADPH-oxidase inhibitor apocynin partially restores diminished cartilage proteoglycan synthesis and reduces inflammation in mice. Eur. J. Pharmacol. 531, 264-269 https://doi.org/10.1016/j.ejphar.2005.11.061
  14. Ichikawa, H., N. Yoshida, T. Takagi, N. Tomatsuri, K. Katada, Y. Isozaki, K. Uchiyama, Y. Naito, T. Okanoue, and T. Yoshikawa. 2004. Lansoprazole ameliorates intestinal mucosal damage induced by ischemia-reperfusion in rats. World J. Gastroenterol. 10, 2814-2817
  15. Koike, K., E. E. Moore, F. A. Moore, F. J. Kim, V. S. Carl, and A. Banerjee. 1995. Gut phospholipase A2 mediates neutrophil priming and lung injury after mesenteric ischemia-reperfusion. Am. J. Physiol. 268, G397-G403
  16. Lee, Y. M., Y. -Y. Park, T. Kim, H. G. Cho, Y. J. Lee, and J. E. Repine. 1999. Effect of the inhibition of phospholipase A2 in generation of free radicals in intestinal ischemia/reperfusion induced acute lung injury. Korean J. Physiol. Pharmacol. 3, 263-273
  17. Lopez-Farre, A., C. Caramelo, A. Esteban, M. L. Alberola, I. Millas, M. Monton, and S. Casado. 1995. Effects of aspirin on platelet-neutrophil interactions. Role of nitric oxide and endothelin-1. Circulation 91, 2080-2088 https://doi.org/10.1161/01.CIR.91.7.2080
  18. Masferrer, J. L., B. S. Zweifel, P. T. Manning, S. D. Hauser, K. M. Leahy, W. G. Smith, P. C. Isakson, and K. Seibert. 1994. Selective inhibition of inducible cyclooxygenase 2 in vivo is antiinflammatory and nonulcerogenic. Proc. Natl. Acad. Sci. U.S.A. 91, 3228-3232 https://doi.org/10.1073/pnas.91.8.3228
  19. Pae, H.-O., S.-O., Jeong, B. S. Koo, H.-Y. Ha, K.-M. Lee, and H.-T. Chung. 2008. Tranilast, an orally active anti-allergic drug, up-regulates the anti-inflammatory heme oxygenase-1 expression but down-regulates the pro-inflammatory cyclooxygenase-2 and inducible nitric oxide synthase expression in RAW264.7 macrophages. Biochem. Biophys. Res. Commun. 371, 361-365 https://doi.org/10.1016/j.bbrc.2008.04.054
  20. Park, S. D. and Y.-Y. Park. 2006. Changes of serum ferritin in acute lung injury unduced by intestinal ischemia/reperfusion. Korean J. Physiol. Pharmacol. 10, 187-191
  21. Park, Y.-Y., B. M. Hybertson, R. M. Wright, M. A. Fini, N. D. Elkins, and J. E. Repine. 2004. Serum ferritin elevation and acute lung injury in rats subjected to hemorrhage: reduction by mepacrine treatment. Exp. Lung Res. 30, 571-584 https://doi.org/10.1080/01902140490489207
  22. Park, Y.-Y. and Y. M. Lee. 2006. Effects of aspirin on the pathogenesis of acute lung injury in rats subjected to hemorrhage. Tuberc. Respir. Dis. 60, 83-91 https://doi.org/10.4046/trd.2006.60.1.83
  23. Patrono, C. 1989. Aspirin and human platelets: from clinical trials to acetylation of cyclooxygenase and back. Trends. Pharmacol. Sci. 10, 453-458
  24. Podhaisky, H. P., A. Abate, T. Polte, S. Oberle, and H. Schroder. 1997. Aspirin protects endothelial cells from oxidative stress - possible synergism with vitamin E. FEBS Lett. 417, 349-351 https://doi.org/10.1016/S0014-5793(97)01307-0
  25. Pouliot, M., C. Gilbert, P. Borgeat, P. E. Poubelle, S. Bourgoin, C. Créminon, J. Maclouf, S. R. McColl, and P. H. Naccache. 1998. Expression and activity of prostaglandin endoperoxide synthase-2 in agonist-activated human neutrophils. FASEB J. 12, 1109-1123
  26. Powell, C. S., M. M. Wright, and R. M. Jackson. 2004. p38mapk and MEK1/2 inhibition contribute to cellular oxidant injury after hypoxia. Am. J. Physiol. Lung Cell Mol. Physiol. 286, L826-L833
  27. Reddy, D. B. and P. Reddanna. 2009. Chebulagic acid (CA) attenuates LPS-induced inflammation by suppressing NF-kappaB and MAPK activation in RAW 264.7 macrophages. Biochem. Biophys. Res. Commun. 381, 112-117 https://doi.org/10.1016/j.bbrc.2009.02.022
  28. Sakuma, T., K. Takahashi, N. Ohya, O. Kajikawa, T. R. Martin, K. H. Albertine, and M. A. Matthay. 1999. Ischemia-reperfusion lung injury in rabbits: mechanisms of injury and protection. Am. J. Physiol. 276, L137-L145
  29. Shimabukuro, D. W., T. Sawa, and M. A. Gropper. Injury and repair in lung and airways. Crit. Care Med. 31, S524-531 https://doi.org/10.1097/01.CCM.0000081437.06466.B3
  30. Terada, L. S., D. M. Guidot, J. A. Leff, I. R. Willingham, M. E. Hanley, D. Piermattei, and J. E. Repine. 1992. Hypoxia injures endothelial cells by increasing endogenous xanthine oxidase activity. Proc. Natl. Acad. Sci. U.S.A. 89, 3362-3366 https://doi.org/10.1073/pnas.89.8.3362
  31. van Jaarsveld, H., J. M. Kuyl, G. F. van Zyl, and H. C. Barnard. 1994. Salicylate in the perfusate during ischemia/reperfusion prevented mitochondrial injury. Res. Commun. Mol. Pathol. Pharmacol. 86, 287-295 https://doi.org/10.1016/S0891-5849(98)00033-1
  32. Vane, J., Y. S. Bakhle, and R. M. Botting. 1998. Cyclooxygenases 1 and 2. Annu. Rev. Pharmacol. Toxicol. 38, 97-120 https://doi.org/10.1146/annurev.pharmtox.38.1.97
  33. Wahn, H. and S. Hammerschmidt. 1998. Inhibition of PMNand HOC1-induced vascular injury in isolated rabbit lungs by acetylsalicylic acid: a possible link between neutrophil-derived oxidative stress and eicosanoid metabolism? Biochim. Biophys. Acta 1408, 55-66 https://doi.org/10.1016/S0925-4439(98)00055-6
  34. Wang, X., H. Xue, Q. Xu, K. Zhang, X. Hao, L. Wang, and G. Yan. 2008. p38 kinase/cytosolic phospholipase A2/cyclooxygenase-2 pathway: a new signaling cascade for lipopolysaccharide-induced interleukin-1beta and interleukin-6 release in differentiated U937 cells. Prostaglandins Other Mediat. 86, 61-67 https://doi.org/10.1016/j.prostaglandins.2008.03.002
  35. Ware, L. B. and M. A. Matthay. 2000. The acute respiratory distress syndrome. N. Engl. J. Med. 324, 1334-1349 https://doi.org/10.1056/NEJM200005043421806
  36. Wu, K. K. 1998. Biochemical pharmacology of nonsteroidal anti-inflammatory drugs. Biochem. Pharmacol. 55, 543-547 https://doi.org/10.1016/S0006-2952(97)00342-0
  37. Xu, X. M., L. Sansores-Garcia, X. M. Chen, N. Matijevic-Aleksic, M. Du, and K. K. Wu. 1999. Suppression of inducible cyclooxygenase 2 gene transcription by aspirin and sodium salicylate. Proc. Natl. Acad. Sci. U.S.A. 96, 5292-5297 https://doi.org/10.1073/pnas.96.9.5292
  38. Zou, L., B. Attuwaybi, and B. C. Kone. 2003. Effects of NF-kappa B inhibition on mesenteric ischemia-reperfusion injury. Am. J. Physiol. 284, G713-G721 https://doi.org/10.1590/S0102-86502005000400013