• 제목/요약/키워드: Hysteresis response

검색결과 279건 처리시간 0.022초

등가 1 자유도계에 의한 철근콘크리트 건물의 비선형 동적해석의 검토 (Estimation of Nonlinear Response for Moment Resisting Reinforced Concrete Frames Using Equivalent SDOF System)

  • 전대한;노필성
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 추계 학술발표회논문집
    • /
    • pp.205-212
    • /
    • 2003
  • To evaluate the seismic performance of multistory building structures use an equivalent SDOF model. This paper presents a method of converting a MDOF system into an equivalent SDOF model. The principal objective of this investigation is to evaluate appropriateness of converting method through perform nonlinear time history analysis of a multistory building structures and an equivalent SDOF model. The hysteresis rules to be used an equivalent SDOF model is obtained from the pushover analysis. The conclusion of this study is following; A method of converting a MDOF system into an equivalent SDOF model through the nonlinear time history response analysis is valid. The representative lateral displacement of a moment resisting reinforced concrete frames is close to the height of the first modal participation vector $_1$$\beta$$_1$u}=1. It can be found that the hysteresis rule of an equivalent SDOF model have influence on the time history response. Therefore, it is necessary for selecting hysteresis rules to consider hysteresis characteristics of a moment resisting reinforced concrete frames.

  • PDF

Seismic demand estimation of electrical cabinet in nuclear power plant considering equipment-anchor-interaction

  • Cho, Sung Gook;Salman, Kashif
    • Nuclear Engineering and Technology
    • /
    • 제54권4호
    • /
    • pp.1382-1393
    • /
    • 2022
  • This paper investigates the seismic behavior of an electrical cabinet considering the influence of equipment-anchor-interaction (EAI) that is generally not taken into consideration in a decoupled analysis. The hysteresis behavior of an anchor bolt in concrete was thereby considered to highlight this interaction effect. To this end, the experimental behavior of an anchor bolt under reversed cyclic loading was taken from the recently developed literature, and a numerical model for the anchor hysteresis was developed using the component approach. The hysteresis properties were then used to calibrate the multi-linear link element that is implemented as a boundary condition for the cabinet incorporating the EAI. To highlight this EAI further, the nonlinear time history analysis was performed for a cabinet considering the hysteresis behavior comparative to a fixed boundary condition. Additionally, the influence on the seismic fragility was evaluated for the operational and structural condition of the cabinet. The numerical analysis considering the anchor hysteresis manifests that the in-cabinet response spectra (ICRS) are significantly amplified with the corresponding reduction in the seismic capacity of 25% and 15% for an operational and structural safety condition under the selected protocols. Considering the fixed boundary condition over a realistic hysteresis behavior of the anchor bolt is more likely to overestimate the seismic capacity of the cabinet in a seismic qualification procedure.

TGDI엔진용 전자식 수온조절기의 감온성능 향상을 위한 그래핀 소재의 적용 (Application of Graphene Platelets on Electronic Controlled Thermostat of TGDI Engine for Improving Thermal Sensitivity)

  • 김서규;김용정;정희화;전원일;정진우;정수진
    • 한국자동차공학회논문집
    • /
    • 제25권1호
    • /
    • pp.66-73
    • /
    • 2017
  • In this work, graphene platelets were introduced into wax in an automotive electronic controlled thermostat for the purpose of enhancing its thermal-conductive property and improving response performance. Graphene content ranging from 10 % to 20% was added into and mixed with the wax to investigate the effect of graphene amounts on the performance of an automotive electronic controlled thermostat in terms of response time, hysteresis and melting temperature. The experimental results revealed that graphene in wax contributed to a reduction in the response time and hysteresis of an automotive electronic controlled thermostat. As a consequence, important improvement in thermal sensitivity, full lift, melting temperature and hysteresis were obtained. The thermal response of wax with graphene content of 20 % was improved by 25 %, as compared to that of wax with Cu content of 20 %. Hysteresis of wax with graphene was reduced by $0.6^{\circ}C$ as compared to that of wax with Cu content. The melting temperature of wax is lowered and hysteresis is also improved with increased graphene content of wax in an electronic controlled thermostat. We hope that this study can help further the transition of nano-fluid technology from small-scale research laboratories to industrial application in the automotive sector.

Residual drift analyses of realistic self-centering concrete wall systems

  • Henry, Richard S.;Sritharan, Sri;Ingham, Jason M.
    • Earthquakes and Structures
    • /
    • 제10권2호
    • /
    • pp.409-428
    • /
    • 2016
  • To realise the full benefits of a self-centering seismic resilient system, the designer must ensure that the entire structure does indeed re-center following an earthquake. The idealised flag-shaped hysteresis response that is often used to define the cyclic behaviour of self-centering concrete systems seldom exists and the residual drift of a building subjected to an earthquake is dependent on the realistic cyclic hysteresis response as well as the dynamic loading history. Current methods that are used to ensure that re-centering is achieved during the design of self-centering concrete systems are presented, and a series of cyclic analyses are used to demonstrate the flaws in these current procedures, even when idealised hysteresis models were used. Furthermore, results are presented for 350 time-history analyses that were performed to investigate the expected residual drift of an example self-centering concrete wall system during an earthquake. Based upon the results of these time-history analyses it was concluded that due to dynamic shake-down the residual drifts at the conclusion of the ground motion were significantly less than the maximum possible residual drifts that were observed from the cyclic hysteresis response, and were below acceptable residual drift performance limits established for seismic resilient structures. To estimate the effect of the dynamic shakedown, a residual drift ratio was defined that can be implemented during the design process to ensure that residual drift performance targets are achieved for self-centering concrete wall systems.

지진하중의 특성과 이력모델에 따른 저층 표준학교건물의 비탄성 지진거동 (Inelastic Seismic Behavior of Low-story Standard School Buildings according to Characteristics of Earthquake Loads and Hysteresis Models)

  • 김진상;윤태호
    • 한국산학기술학회논문지
    • /
    • 제13권9호
    • /
    • pp.4294-4301
    • /
    • 2012
  • 본 연구는 내진설계 되지 않은 학교시설물 중 다수를 차지하는 1980년도 표준설계 도면(건설부 공고 제130호, 1980년 10월 28일)에 의하여 건설된 국내에 현존하는 4층 모멘트 연성골조의 학교건물을 대상으로 이력모델의 특성과 지진파의 특성에 따라 표준학교건물의 비탄성지진거동을 분석하고자 한다. El-centro지진은 주파수 성분과 강진지속시간의 특성에 의하여 표준학교건물의 단변방향 층전단력, 층간변위비, 층변위 응답에 매우 큰 영향을 미치며 특히 수정다케다모델 선택시 응답의 차이가 매우 크게 나타남을 알 수 있다. 층전단력의 경우 최대 46%, 층간변위비의 경우 최대 70%, 층변위의 경우 최대 59%의 편차를 보인다. Santa Monica지진은 장변방향의 응답에서 이력모델별 편차가 더 크게 나타났으며, 층전단력은 최대 59%, 층간변위비는 최대 65%, 층변위는 최대 50%의 편차를 보였다. 이는 장변방향의 고유주기가 단변방향에 비하여 크기 때문에 1초이상의 주기성분이 많은 Santa Monica지진의 특성에 의한 것으로 판단된다. Taft지진은 이력모델에 따른 층간변위비와 층변위 응답의 편차가 가장 적은 것으로 나타났으며, 층간변위비는 최대 15%, 층변위는 최대 5%의 편차를 보여 변위응답에 있어서 이력모델에 가장 의존도가 적은 결과를 얻을 수 있을 것으로 판단 된다.

Accuracy and robustness of hysteresis loop analysis in the identification and monitoring of plastic stiffness for highly nonlinear pinching structures

  • Hamish Tomlinson;Geoffrey W. Rodgers;Chao Xu;Virginie Avot;Cong Zhou;J. Geoffrey Chase
    • Smart Structures and Systems
    • /
    • 제31권2호
    • /
    • pp.101-111
    • /
    • 2023
  • Structural health monitoring (SHM) covers a range of damage detection strategies for buildings. In real-time, SHM provides a basis for rapid decision making to optimise the speed and economic efficiency of post-event response. Previous work introduced an SHM method based on identifying structural nonlinear hysteretic parameters and their evolution from structural force-deformation hysteresis loops in real-time. This research extends and generalises this method to investigate the impact of a wide range of flag-shaped or pinching shape nonlinear hysteretic response and its impact on the SHM accuracy. A particular focus is plastic stiffness (Kp), where accurate identification of this parameter enables accurate identification of net and total plastic deformation and plastic energy dissipated, all of which are directly related to damage and infrequently assessed in SHM. A sensitivity study using a realistic seismic case study with known ground truth values investigates the impact of hysteresis loop shape, as well as added noise, on SHM accuracy using a suite of 20 ground motions from the PEER database. Monte Carlo analysis over 22,000 simulations with different hysteresis loops and added noise resulted in absolute percentage identification error (median, (IQR)) in Kp of 1.88% (0.79, 4.94)%. Errors were larger where five events (Earthquakes #1, 6, 9, 14) have very large errors over 100% for resulted Kp as an almost entirely linear response yielded only negligible plastic response, increasing identification error. The sensitivity analysis shows accuracy is reduces to within 3% when plastic drift is induced. This method shows clear potential to provide accurate, real-time metrics of non-linear stiffness and deformation to assist rapid damage assessment and decision making, utilising algorithms significantly simpler than previous non-linear structural model-based parameter identification SHM methods.

Current Controlled PWM for Multilevel Voltage-Source Inverters with Variable and Constant Switching Frequency Regulation Techniques: A Review

  • Gawande, S.P.;Ramteke, M.R.
    • Journal of Power Electronics
    • /
    • 제14권2호
    • /
    • pp.302-314
    • /
    • 2014
  • Due to advancements in power electronics and inverter topologies, the current controlled multilevel voltage-source pulse width modulated (PWM) inverter is usually preferred for accurate control, quick response and high dynamic performance. A multilevel topology approach is found to be best suited for overcoming many problems arising from the use of high power converters. This paper presents a comprehensive review and comparative study of several current control (CC) techniques for multilevel inverters with a special emphasis on various approaches of the hysteresis current controller. Since the hysteresis CC technique poses a problem of variable switching frequency, a ramp-comparator controller and a predictive controller to attain constant switching frequency are described along with its quantitative comparison. Furthermore, various methods have been reviewed to achieve hysteresis current control PWM with constant switching frequency operation. This paper complies various guidelines to choose a particular method suitable for application at a given power level, switching frequency and dynamic response.

Fast Transient Buck Converter Using a Hysteresis PWM Controller

  • Liu, Yong-Xiao;Zhao, Jin-Bin;Qu, Ke-Qing
    • Journal of Power Electronics
    • /
    • 제13권6호
    • /
    • pp.991-999
    • /
    • 2013
  • In this paper, a fast transient buck converter using hysteresis PWM control is presented. The proposed control method is based on hysteresis control of the capacitor C voltage. This offers a faster transient response to meet the challenges of the power supply requirements for fast dynamic input and load changes. It also provides better stability and solves the compensation problem of the error amplifier in conversional voltage PWM control. Finally, the steady-state and dynamic operation of the proposed control method are analyzed and verified by simulation and experimental results.

Seismic Response Analyses of Seismically Isolated Structures Using the Laminated Rubber Bearings

  • Koo, Gyeong-Hoi;Lee, Jae-Han;Bong Yoo
    • Nuclear Engineering and Technology
    • /
    • 제30권5호
    • /
    • pp.387-395
    • /
    • 1998
  • In general, the laminated rubber bearing (LRB), a composite structure laminated with the elastic rubber and steel plates, has a complex hysteretic nonlinear characteristics in relationships between the restoring force and shear deflection. The representative nonlinear characteristics of LRB include the change of hysteresis loop with cyclic shear deflections and the hardening effects at large shear deflection regions. Changes of the hysteresis loop of LRB with cyclic shear deflections affect the horizontal stiffness and the damping characteristics. The hardening behavior of LRB in large shear deflection region results in an increased horizontal stiffness and therefore, has a great impacton the seismic responses. In this paper, the seismic response analysis is carried out using the modified hysteretic bi-linear model of LRB, which takes into account the hysteresis loop change and the hardening behavior with cyclic shear deflection. The results on seismic responses are compared with those obtained using the widely used hysteretic hi-linear model. The new model is found to reveal the greater amount of peak acceleration response.

  • PDF

적응 Hysteresis band폭 제어 알고리즘을 이용한 Brushless DC Motor의 운전 (Operation of Brushless DC Motor using the Adaptive hysteresis bandwidth control algorithm)

  • 조계석;김광연;현동석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 추계학술대회 논문집 학회본부
    • /
    • pp.171-174
    • /
    • 1991
  • Among the various PWM methods, the hysteresis-band current control PWM method is popularly used because of its simplicity of implementation, fast response characteristics and inherent peak current limiting capability. However, the current control PWM method with a fixed hysteresis-band has the disadvantage that switching frequency decreases and current ripple is high as the increasing of back-EMF. As a result, load current contains excess harmonics. This paper describes a adaptive hysteresis-bandwidth control algorithm so as to maintain the average switching frequency constant and decrease the current ripple where the hysteresis bandwidth is derived as a relation with the switching frequency. This control algorithm is applied to the surface-type brushless DC motor with separated winding and using the computer simulation, the validity of its algorithm is proved.

  • PDF