• Title/Summary/Keyword: Hysteresis function

Search Result 159, Processing Time 0.025 seconds

An Insight Into the Recycling of Waste Flexible Polyurethane Foam Using Glycolysis

  • Woo Seok Jin;Pranabesh Sahu;Gyuri Kim;Seongrok Jeong;Cheon Young Jeon;Tae Gyu Lee;Sang Ho Lee;Jeong Seok Oh
    • Elastomers and Composites
    • /
    • v.58 no.1
    • /
    • pp.32-43
    • /
    • 2023
  • The worldwide use of polyurethane foam products generates large amounts of waste, which in turn has detrimental effects on the surroundings. Hence, finding an economical and environmentally friendly way to dispose of or recycle foam waste is an utmost priority for researchers to overcome this problem. In that sense, the glycolysis of waste flexible polyurethane foam (WFPF) from automotive seat cushions using different industrial-grade glycols and potassium hydroxide as a catalyst to produce recovered polyol was investigated. The effect of different molecular weight polyols, catalyst concentration, and material ratio (PU foam: Glycols) on the reaction conversion and viscosity of the recovered polyols was determined. The obtained recovered polyols are obtained as single or split-phase reaction products. Besides, the foaming characteristics and physical properties such as cell morphology, thermal stability, and compressive stress-strain nature of the regenerated flexible foams based on the recovered polyols were discussed. It was observed that the regenerated flexible foams displayed good seating comfort properties as a function of hardness, sag factor, and hysteresis loss compared to the reference virgin foam. With the growing demand for a sustainable and circular economy, a global valorization of glycolysis products from polyurethane scraps can be realized by transforming them into profitable substances.

J2-bounding Surface Plasticity Model with Zero Elastic Region (탄성영역이 없는 J2-경계면 소성모델)

  • Shin, Hosung;Oh, Seboong;Kim, Jae-min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.469-476
    • /
    • 2023
  • Soil plasticity models for cyclic and dynamic loads are essential in non-linear numerical analysis of geotechnical structures. While a single yield surface model shows a linear behavior for cyclic loads, J2-bounding surface plasticity model with zero elastic region can effectively simulate a nonlinearity of the ground response with the same material properties. The radius of the yield surface inside the boundary surface converged to 0 to make the elastic region disappear, and plastic hardening modulus and dilatancy define plastic strain increment. This paper presents the stress-strain incremental equation of the developed model, and derives plastic hardening modulus for the hyperbolic model. The comparative analyses of the triaxial compression test and the shallow foundation under the cyclic load can show stable numerical convergence, consistency with the theoretical solution, and hysteresis behavior. In addition, plastic hardening modulus for the modified hyperbolic function is presented, and a methodology to estimate model variables conforming 1D equivalent linear model is proposed for numerical modeling of the multi-dimensional behavior of the ground.

Influence of Heat Treatment Conditions on Temperature Control Parameter ((t1) for Shape Memory Alloy (SMA) Actuator in Nucleoplasty (수핵성형술용 형상기억합금(SMA) 액추에이터 와이어의 열처리 조건 변화가 온도제어 파라미터(t1)에 미치는 영향)

  • Oh, Dong-Joon;Kim, Cheol-Woong;Yang, Young-Gyu;Kim, Tae-Young;Kim, Jay-Jung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.619-628
    • /
    • 2010
  • Shape Memory Alloy (SMA) has recently received attention in developing implantable surgical equipments and it is expected to lead the future medical device market by adequately imitating surgeons' flexible and delicate hand movement. However, SMA actuators have not been used widely because of their nonlinear behavior called hysteresis, which makes their control difficult. Hence, we propose a parameter, $t_1$, which is necessary for temperature control, by analyzing the open-loop step response between current and temperature and by comparing it with the values of linear differential equations. $t_1$ is a pole of the transfer function in the invariant linear model in which the input and output are current and temperature, respectively; hence, $t_1$ is found to be related to the state variable used for temperature control. When considering the parameter under heat treatment conditions, $T_{max}$ was found to assume the lowest value, and $t_1$ was irrelevant to the heat treatment.

Fabrication of Bismuth- and Aluminum-Substituted Dysprosium Iron Garnet Films for Magneto-Optic Recording by Pyrolysis and Their Magnetic and Magneto-Optic Properties

  • Cho, Jae-Kyong
    • The Korean Journal of Ceramics
    • /
    • v.1 no.2
    • /
    • pp.91-95
    • /
    • 1995
  • Polycrystalline bismuth- and aluminum- substituted dysporsium and yttrium iron garnet (Bi2R3-xAlyFe5-yO12, R=Dy or Y, $0\leqx\leq3, \; 0\leqy\leq3$) films have been prepared by pyrolysis. The crystallization temperatures, the solubility limit of bismuth ions into the garnet phase, and magnetic and magneto-optic properties of the films have been investigated as a function of bismuth and aluminum concentration. It was found that the crystallization temperatures as a function of bismuth and aluminum concentration. It was found that the crystallization temperatures of these films rapidly decreased as bismuth concentration. It was found that the crystallization temperatures of these films rapidly decreased as bismuth concentration (x) increased up to x=1.5 and then remained temperatures of these films rapidly decreased as bismuth concentration (x) increased up to x=1.5 and then remained unchanged at x>1.5, whereas, showed no changes as aluminum concentration (y) increased up to y=1.0 and then gradually increased at y>1.0. The solubility limit of bismuth ions was x=1.8 when y=0 but increased to x=2.3 when y=1.0. It was demonstrated that the magnetic and magneto-optic properties of the dysprosium iron garnet films could be tailored by bismuth and aluminum substitution suitable for magneto-optic recording as follows. The saturation magnetization and coercivity data obtained for the films indicated that the film composition at which the magnetic compensation temperature became room temperature was y=1.2 when x=1.0. Near this composition the coercivity and the squareness of the magnetic hysteresis loop of the films were several kOe and unit, respectively. The Curie temperatures of the films increased with the increase of x but decreaed with the increase of y, and was 150-$250^{\circ}C$ when x=1.0 and y=0.6-1.4. The Faraday rotation at 633 nm of the films increased as x increased but decreased as y increased, and was 1 deg/$\mu\textrm{m}$ when x=1.0 and y=1.0. Based on the data obtained, the appropriate film composition for magneto-optic recording was estimated as near x=1.0 and y=1.0 or $BiDy_2AlFe_4O_{12}$.

  • PDF

Structural and Optical Characterizations of VO2 Film on Graphene/Sapphire Substrate by Post-annealing after Sputtering (그래핀/사파이어 기판상에 스퍼터링 후 열처리된 VO2박막의 구조 및 광학적 특성변화 연구)

  • Kim, Keun Soo;Kim, Hyeongkeun;Kim, Yena;Han, Seung-Ho;Bae, Dong Jae;Yang, Woo Seok
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.2
    • /
    • pp.98-104
    • /
    • 2013
  • $VO_2$ is an attractive thermochromic material, in which its electrical and optical properties can be switched by the structural phase-transition about $68^{\circ}C$. Recently, graphene is also a rising material which is researched as a transparent electrode because of its superior electrical and optical characteristics. In this respect, we try to fabricate the hybridized films using $VO_2$ and graphene on transparent sapphire substrate and then we investigate a structure and characterize an optical property for the samples as a function of temperature. According to the result of IR-transmittance analysis of $VO_2$ films as a function of temperature, the graphene-supported sapphire substrates are better about 10% than the bare sapphire substrates. The mean phase transition temperatures are also decreased as the number of graphene-layers increased and the hysteresis of phase transitions are narrowed.

Magnetoresistance Effects in Cr5S6 Single Crystal (Cr5S6 단결정의 자기저항 효과)

  • Lee, Kyung-Dong;Song, Ki-Myung;Hur, Nam-Jung
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.6
    • /
    • pp.207-211
    • /
    • 2010
  • We have investigated the magnetoresistance effect in $Cr_5S_6$ single crystals prepared by vapor transport method. Room temperature X-ray diffraction (XRD) study reveals the phase formation of the single crystals with trigonal crystal structure. The magnetization was measured as a function of temperature (5 K~400 K) and applied magnetic field (0.1 T and 5 T). The magnetization curve as a function of temperature reveals the two transition states of $Cr_5S_6$: one from antiferromagnetic to ferrimagnetic state at ~150 K and the other from ferrimagnetic to paramagnetic state at ~300 K. Temperature dependent resistivity at 0 T and 5 T magnetic field shows the metallic behavior, showing the transition from antiferromagnetic to ferrimagnetic state at ~150 K. Magnetic field dependence of magnetization was measured at four fixed temperatures viz. 100 K, 150 K, 200 K, and 300 K. It is observed that at 200 K and 300 K it shows well M-H hysteresis behavior, whereas at 100 K and 150 K it shows non-hysteretic nature. A negative magnetoresistance (MR) of -2% is observed at 5 T for $Cr_5S_6$ single crystal at 150 K, near the antiferromagnetic transition temperature.

Finite Difference Model of Unsaturated Soil Water Flow Using Chebyshev Polynomials of Soil Hydraulic Functions and Chromatographic Displacement of Rainfall (Chebyshev 다항식에 의한 토양수분특성 및 불포화 수리전도도 추정과 부분 치환 원리에 의한 강우 분포를 이용한 토양수분 불포화 이동 유한차분 수리모형)

  • Ro, Hee-Myong;Yoo, Sun-Ho;Han, Kyung-Hwa;Lee, Seung-Heon;Lee, Goon-Taek;Yun, Seok-In;Noh, Young-Dong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.4
    • /
    • pp.181-192
    • /
    • 2003
  • We developed a mathematical simulation model to portray the vertical distribution of soil water from the measured weather data and the known soil hydraulic properties, and then compared simulation results with the periodically measured soil water profiles obtained on Jungdong sandy loam to verify the model, In this model, we solved potential-based Richards' equation by the implicit finite difference method superimposed on the predictor-corrector scheme. We presumed that: soil hydraulic properties are homogeneous; soil water flows isothermally; hysteresis is not considered; no vapor flows; no heat transfers into the soil profiles; and water added to soil surface is distributed along the soil profile following partial displacement principle. The input data were broadly classified into two groups: (1) daily weather data such as rainfall, maximum and minimum air temperatures, relative humidity and solar radiation and (2) soil hydraulic data to approximate unsaturated hydraulic conductivity and water retention. Each hydraulic polynomial function approximated using the Chebyshev polynomial and least square difference technique in tandem showed a fairly good fit of the given set of data. Vertical distribution of soil water as approximations to the Richards' equation subject to changing surface and phreatic boundaries was solved numerically during 53 days with a comparatively large time increment, and this pattern agreed well with field neutron scattering data, except for the surface 0.1 m slab.

Estimation on Unsaturated Characteristic Curves of Tailings obtained from Waste Dump of Imgi Mine in Busan (부산 임기광산 폐석적치장 광미의 불포화 특성곡선 산정)

  • Song, Young-Suk;Kim, Kyeong-Su;Jeong, Sueng-Won;Lee, Choon-Oh
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.3
    • /
    • pp.47-58
    • /
    • 2014
  • To investigate the unsaturated characteristics of the tailings obtained from the waste dump at Imgi mine, matric suction and volumetric water content were measured in both drying and wetting processes using Automated Soil-Water Characteristics Curve Apparatus. Based on the measured result, Soil Water Characteristic Curves (SWCC) were estimated by van Genuchten model. According to the unsaturated soil classification method, the tailings of the waste dump correspond to clayey sand. As a result of Suction Stress Characteristic Curve (SSCC) by Lu and Likos model, SSCC has a shape of S which is similar to SWCC. The hysteresis phenomenon occurred in SSCCs, which means the suction stress of drying path is larger than that of wetting path in the same effective degree of saturation. The effective stress of unsaturated soil is equal to that of saturated soil when matric suction is less than Air Entry Value (AEV). However, the effective stress of unsaturated soil is larger than that of saturated soil when matic suction is more than AEV. Meanwhile, unsaturated hydraulic conductivity by van Genuchten model decreased with increasing matric suction, and the hydraulic conductivity of drying path is larger than that of wetting path.

Adsorption Characteristics of Hydrogen in Regular Single-Walled Carbon Nanotube Arrays at Low Temperature (저온에서 규칙적인 단일벽 탄소나노튜브 배열의 수소 흡착 특성)

  • Yang Gon Seo
    • Clean Technology
    • /
    • v.29 no.3
    • /
    • pp.217-226
    • /
    • 2023
  • The amount of hydrogen adsorbed in arrays of single walled carbon nanotubes (SWNTs) was studied as a function of nanotube diameter and distance between the nearest-neighbor nanotubes on square arrangements using a grand canonical Monte Carlo simulation. The influence of the geometry of a triangle array with the same diameters and distances was also studied. Hydrogen-carbon and hydrogen-hydrogen interactions were modeled with Lennard-Jones potentials for short range interactions and electrostatic interactions were added for hydrogen-hydrogen pairs to consider quantum contributions at low temperatures. At 194.5 K, Type I isotherms for large-diameter SWNTs and Type IV isotherms without hysteresis between adsorption and desorption processes for wider tube separations were observed. At 200 bars, the gravimetric hydrogen storage capacity of the SWNTs was reached or exceeded the US Department of Energy (DOE) target, but the volumetric capacity was about 70% of the DOE target. At 77 K, a two-step adsorption was observed, corresponding to a monolayer formation step followed by a condensation step. Hydrogen was adsorbed first to the inner surface of the nanotubes, then to the outer surface, intratubular space and the interstitial channels between the nanotube bundles. The simulation indicated that SWNTs of various diameters and distances in a wide range of configurations exceeded the DOE gravimetric and volumetric targets at under 1 bar.