Finite Difference Model of Unsaturated Soil Water Flow Using Chebyshev Polynomials of Soil Hydraulic Functions and Chromatographic Displacement of Rainfall

Chebyshev 다항식에 의한 토양수분특성 및 불포화 수리전도도 추정과 부분 치환 원리에 의한 강우 분포를 이용한 토양수분 불포화 이동 유한차분 수리모형

  • Ro, Hee-Myong (School of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University) ;
  • Yoo, Sun-Ho (School of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University) ;
  • Han, Kyung-Hwa (School of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University) ;
  • Lee, Seung-Heon (Rural Research Institute, Korea Agricultural and Rural Infrastructure Corporation) ;
  • Lee, Goon-Taek (National Instrumentation Center for Environmental Management, Seoul National University) ;
  • Yun, Seok-In (School of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University) ;
  • Noh, Young-Dong (School of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University)
  • 노희명 (서울대학교 농생명공학부) ;
  • 유순호 (서울대학교 농생명공학부) ;
  • 한경화 (서울대학교 농생명공학부) ;
  • 이승헌 (농업기반공사 농어촌연구원) ;
  • 이군택 (서울대학교 농업과학공동기기센터) ;
  • 윤석인 (서울대학교 농생명공학부) ;
  • 노영동 (서울대학교 농생명공학부)
  • Received : 2003.07.08
  • Accepted : 2003.07.25
  • Published : 2003.08.30

Abstract

We developed a mathematical simulation model to portray the vertical distribution of soil water from the measured weather data and the known soil hydraulic properties, and then compared simulation results with the periodically measured soil water profiles obtained on Jungdong sandy loam to verify the model, In this model, we solved potential-based Richards' equation by the implicit finite difference method superimposed on the predictor-corrector scheme. We presumed that: soil hydraulic properties are homogeneous; soil water flows isothermally; hysteresis is not considered; no vapor flows; no heat transfers into the soil profiles; and water added to soil surface is distributed along the soil profile following partial displacement principle. The input data were broadly classified into two groups: (1) daily weather data such as rainfall, maximum and minimum air temperatures, relative humidity and solar radiation and (2) soil hydraulic data to approximate unsaturated hydraulic conductivity and water retention. Each hydraulic polynomial function approximated using the Chebyshev polynomial and least square difference technique in tandem showed a fairly good fit of the given set of data. Vertical distribution of soil water as approximations to the Richards' equation subject to changing surface and phreatic boundaries was solved numerically during 53 days with a comparatively large time increment, and this pattern agreed well with field neutron scattering data, except for the surface 0.1 m slab.

기상 자료와 토양 수리 특성을 입력하여 토양수분의 수직 이동 및 분포를 예측할 수 있는 수치모형을 개발하고, 이 모형을 검정하기 위해 중동사양토를 대상으로 추정한 결과와 중성자 산란법에 의해 측정한 수분단면을 비교하였다. 이 모형에서 토양수분 포텐셜을 기준으로 한 Richards 방정식의 해를 predictor-corrector 격자에 투영한 음함수 유한차분법에 의해 구하였다. 이 모형에서는 토양단면의 수리특성은 균질하고, 토양수분은 등온적으로 흐르고, 수분이력현상은 고려하지 않고, 수증기 및 열 이동은 일어나지 않고, 빗물은 토양 단면에 부분 치환원리에 의해 분배된다고 가정하였다. 이 모형의 입력 자료는 크게 강우량, 최고 및 최저 기온, 상대습도 및 일사량의 일일 기상자료와 불포화 수리전도도 및 수분보유 특성 함수를 추정하기 위한 토양 수리 자료로 구분하였다. Chebyshev 다항식과 최소 자승차를 이용하여 추정한 토양 수리 다항식은 입력 자료와 매우 잘 일치하였다. 다양한 지표 및 하부 경계조건에서 53일 동안 상대적으로 시간증가분을 크게 하여 추정한 Richards 방정식의 해인 토양수분 수직 단면은 지표 10 cm를 제외하고는 중성자 산란법에 의해 측정한 결과와 잘 일치하였다.

Keywords

References

  1. Black, T.A., W.R. Gardner, and G.W. Thurtell. 1969. The prediction of evaporation, drainage, and soil water storage for a bare soil. Soil Sci. Soc. Am. Proc. 33:655-660 https://doi.org/10.2136/sssaj1969.03615995003300050013x
  2. Campbell, G.S. 1974. A simple method for determining unsaturated conductivity from moisture retention data. Soil Sci. 117: 311-314 https://doi.org/10.1097/00010694-197406000-00001
  3. Campbell, G.S. 1985. Soil physics with BASIC: Transport models for soil-plant systems. Elsevier, Amsterdam, The Netherlands
  4. Cho, B.H. 1936. On the empihcal equation for capillary water Flow. Suwon Agronomy Bulletin. 1:20-25
  5. Feddes, R.A., P.J. Kowalik, and H. Zaradny. 1978. Simulation of field water use and crop yield. John Wiley & Sons, New York, USA
  6. Fritton, D.D., D. Kirkham, and R.H. Shaw. 1970. Soil water evaporation, isothermal diffusion, and heat and water transfer. Soil Sci. Soc. Am. Proc. 34:183-189 https://doi.org/10.2136/sssaj1970.03615995003400020006x
  7. Gardner, H.R. 1973. Prediction of evaporation from homogeneous soil based on the flow equation. Soil Sci. Soc.Am.Proc. 37:513-516 https://doi.org/10.2136/sssaj1973.03615995003700040016x
  8. Gottardi, G., and M. Venutteli. 1993. Richards: computer program for the numerical simulation of one-dimensional infiltration into unsaturated soil. Comput. Geosci. 19:1239-1266 https://doi.org/10.1016/0098-3004(93)90028-4
  9. Hanks, R.J., and S.A. Bowers. 1962. Numehcal solution ofthe moisture flow equation for infiltration into layered soils. Soil Sci. Soc. Am. Proc. 26:530-534 https://doi.org/10.2136/sssaj1962.03615995002600060007x
  10. Hanks, R.J., H.R. Gardner, and M.L. Fairbourn. 1967. Evaporation of water from soils as influenced by drying with wind or radiation. Soil Sci. Soc. Am. Proc. 31:593-598 https://doi.org/10.2136/sssaj1967.03615995003100050001x
  11. Hillel, D.. C. van Beek, and H. Talpaz. 1975. A microscopic model of water uptake and salt movement to plant roots. Soil Sci. 120:385-399 https://doi.org/10.1097/00010694-197511000-00010
  12. Hughson, D.L, and T.C.J. Yeh. 2000. An inverse model for three-dimensional flow in variably saturated porous media. Water Resour. Res. 36:829-840 https://doi.org/10.1029/2000WR900001
  13. Jung, Y.S., and H.M. Taylor. 1984. Differences in soil water uptake associated with time and depth. Soil Sci. 137:341-350 https://doi.org/10.1097/00010694-198405000-00007
  14. Kessler, J., and R.J. Costerbaan. 1974. Determining hydraulic conductivity of soils, In Drainage principles and applications. III. Surveys and investigations. ILRI, Wageningen
  15. Kramer, P.J. 1983. Water relations of plants. Academic Press, New York, USA
  16. Lapidus, L., and G.F. Knder. 1982. Numerical solution of partial differential equations in science and engineering Wiley-Interscience, New York, USA
  17. Radcliffe, D., T. Hayden. K. Watson, P. Crowley, and R.E. Philip. 1980. Simulation of water within the root zone of a corn crop. Agrono. J. 72:19-24 https://doi.org/10.2134/agronj1980.00021962007200010005x
  18. Reynolds, W.D., and G.K. Walker. 1984. Development and validation of a numerical model simulating evaporation from short cores. Soil Sci. Soc. Am. J. 48:960-969 https://doi.org/10.2136/sssaj1984.03615995004800050002x
  19. Ritchie, J.T. 1972. Model for predicting evaporation from a row crop with incomplete cover. Water Resour. Res. 8:1204-1213 https://doi.org/10.1029/WR008i005p01204
  20. Ro, H.M. 1989. A simulation study of water redistribution in the upland Jungdong sandy loam soil. Ph.D. Thesis. Seoul National Univ., Seoul, Korea
  21. Ro, H.M., and S.H. Kim. 1997. 2-dimensiona1 moisture migration modeling in drip-irrigated root zone. J. Kor. Soc. Soil Sci. Fert. 30:314-327
  22. Ro, H.M., and J.M. Park. 2000. Nitrogen requirements and vegetative growth of pot lysimeter-grown 'Fuji' apple trees fertilized by drip irrigation at three nitrogen rates. J. Hort. Sci. Biotech. 75:237-242 https://doi.org/10.1080/14620316.2000.11511230
  23. Ro, H.M., and S.H. Yoo. 1984. Calculation of unsaturated hydraulic conductivity from soil moisture changes in pressure-plate extractor. J. Kor. Soc. Soil Sci. Fert. 17:7-11
  24. Ro, H.M., J.P. Kwon, S.H. Kim, and S.H. Yoo. 2000. A numerical model of three-dimensional soil water distribution for drip irrigation management under cropped conditions. J. Kor. Soc. Agric. Chem. Biotechnol. 43:116-123
  25. Srivastava, R., and T.C.J. Yeh. 1991. Analytical solutions for one-dimensional, transient infiltration toward the water table in homogeneous and layered soils. Water Resour. Res. 27:753-762 https://doi.org/10.1029/90WR02772
  26. Thomas, G.W., R.E. PhiliP, and V.L. Quisenberry. 1978 Characterization of water displacement in soils using simple chromatographic theory. J. Soil Sci. 29:32-37 https://doi.org/10.1111/j.1365-2389.1978.tb02028.x
  27. Van Genuchten, M.Th. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44: 892-898
  28. Zaidel. J., and D. Russo. 1992. Estimation offmite difference interblock conductivities for simulation of infiltration into initially dry soils. Water Resour. Res. 28:2285-2295 https://doi.org/10.1029/92WR00914