Browse > Article
http://dx.doi.org/10.4283/JKMS.2010.20.6.207

Magnetoresistance Effects in Cr5S6 Single Crystal  

Lee, Kyung-Dong (Department of Physics, Inha University)
Song, Ki-Myung (Department of Physics, Inha University)
Hur, Nam-Jung (Department of Physics, Inha University)
Abstract
We have investigated the magnetoresistance effect in $Cr_5S_6$ single crystals prepared by vapor transport method. Room temperature X-ray diffraction (XRD) study reveals the phase formation of the single crystals with trigonal crystal structure. The magnetization was measured as a function of temperature (5 K~400 K) and applied magnetic field (0.1 T and 5 T). The magnetization curve as a function of temperature reveals the two transition states of $Cr_5S_6$: one from antiferromagnetic to ferrimagnetic state at ~150 K and the other from ferrimagnetic to paramagnetic state at ~300 K. Temperature dependent resistivity at 0 T and 5 T magnetic field shows the metallic behavior, showing the transition from antiferromagnetic to ferrimagnetic state at ~150 K. Magnetic field dependence of magnetization was measured at four fixed temperatures viz. 100 K, 150 K, 200 K, and 300 K. It is observed that at 200 K and 300 K it shows well M-H hysteresis behavior, whereas at 100 K and 150 K it shows non-hysteretic nature. A negative magnetoresistance (MR) of -2% is observed at 5 T for $Cr_5S_6$ single crystal at 150 K, near the antiferromagnetic transition temperature.
Keywords
$Cr_5S_6$ single crystal; X-ray diffraction; magnetization; magnetoresistance;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. P. Ramirez, R. J. Cava, and J. Krajewski, Nature 386, 156 (1997).   DOI   ScienceOn
2 P. Chen, and Y. W. Du, J. Phys. Soc. Jpn. 70, 1, 209 (2001).   DOI   ScienceOn
3 G. A. Petrakovskii, L. I. Ryabinkina, N. I. Kiselev, D. A. Velikanov, and A. F. Bovina, JELP Lett. 69, 12, 949 (1999).
4 M. Yuzuri, T. Kaneko, T. Tsushima, S. Miura, S. Abe, G. Kido, and N. Nakagawa, J. Phys. 29, 231 (1988).
5 T. Sugiura, K. Iwahashi, K. Horai, and Y. Masuda, J. Phys. Soc. Jpn. 38, 365 (1975).   DOI
6 C. F. van Bruggen, M. B. Vellinga, and J. Haas, J. Solid State Chem. 2, 303 (1970).   DOI   ScienceOn
7 F. Jellinek, Acta Cryst. 10, 620 (1957).   DOI
8 B. van Larr, Phys. Rev. 156, 2, 654 (1966).
9 M. Yuzuri and Y. Nakamura, J. Phys. Soc. Jpn. 19, 1350 (1694).
10 T. J. A. Pompa, C. Haas, and B. van Laar, J. Phys. Chem. Solids 32, 581 (1971).   DOI   ScienceOn
11 M. Koyama, H. Sato, Y. Ueda, C. Hirai, and M. Taniguchi, Solid State Commun. 125, 243 (2003).   DOI   ScienceOn
12 K. Dwight, R. W. Germann, N. Menyuk, and A. Wold, J. Appl. Phys. 33, 3, 1341 (1962).   DOI
13 K. Kamigaki, T. Kaneko, Y. Koseki, S. Abe, and H. Yoshida, Physica B+C 119, 154 (1983).   DOI   ScienceOn
14 Y. Yamato, M. Matsukawa, Y. Murano, R. Suryanarayanan, S. Nimori, M. Apostu, A. Revcolevschi, K. Koyama, and N. Kobayashi, App. Phys. Lett. 94, 092507 (2009).   DOI   ScienceOn
15 X. Hong, A. Posadas, A. Lin, and C. H. Ahn, Phys. Rev. B 68, 134415 (2003).   DOI   ScienceOn
16 L. Sheng, D. Y. Xing, D. N. Sheng, and C. S. Ting, Phys. Rev. Lett. 79, 9, 1710 (1997).   DOI   ScienceOn
17 H. Y. Hwang, S.-W. Cheong, N. P. Ong, and B. Batlogg, Phys. Rev. Lett. 77, 10, 2041 (1996).   DOI   ScienceOn
18 M. A. Subramanian, B. H. Toby, A. P. Ramirez, W. J. Marshall, A. W. Sleight, and G. H. Kwei, Science 273, 81(1996).   DOI   ScienceOn
19 J. M. D. Coey, M. Viret, L. Ranno, and K. Ounadjela, Phys. Rev. Lett. 75, 21, 3910 (1995).   DOI   ScienceOn
20 S. Weber, P. Lunkenheimer, R. Fichtl, J. Hemberger, V. Tsurkan, and A. Loidl, Phys. Rev. Lett. 96, 157202 (2006).   DOI   ScienceOn