Browse > Article
http://dx.doi.org/10.5757/JKVS.2013.22.2.98

Structural and Optical Characterizations of VO2 Film on Graphene/Sapphire Substrate by Post-annealing after Sputtering  

Kim, Keun Soo (Department of Physics and Graphene Research Institute, Sejong University)
Kim, Hyeongkeun (Electronic Materials and Device Research Center, Korea Electronics Technology Institute)
Kim, Yena (Electronic Materials and Device Research Center, Korea Electronics Technology Institute)
Han, Seung-Ho (Electronic Materials and Device Research Center, Korea Electronics Technology Institute)
Bae, Dong Jae (Department of Physics and Graphene Research Institute, Sejong University)
Yang, Woo Seok (Electronic Materials and Device Research Center, Korea Electronics Technology Institute)
Publication Information
Journal of the Korean Vacuum Society / v.22, no.2, 2013 , pp. 98-104 More about this Journal
Abstract
$VO_2$ is an attractive thermochromic material, in which its electrical and optical properties can be switched by the structural phase-transition about $68^{\circ}C$. Recently, graphene is also a rising material which is researched as a transparent electrode because of its superior electrical and optical characteristics. In this respect, we try to fabricate the hybridized films using $VO_2$ and graphene on transparent sapphire substrate and then we investigate a structure and characterize an optical property for the samples as a function of temperature. According to the result of IR-transmittance analysis of $VO_2$ films as a function of temperature, the graphene-supported sapphire substrates are better about 10% than the bare sapphire substrates. The mean phase transition temperatures are also decreased as the number of graphene-layers increased and the hysteresis of phase transitions are narrowed.
Keywords
$VO_2$; Graphene; Sapphire; Sputtering; Structure; Optical properties;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, Nature Nanotech. 5, 722 (2010).   DOI
2 L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, Science 335, 947 (2012).   DOI   ScienceOn
3 J. Park, W. H. Lee, S. Huh, S. H. Sim, S. B. Kim, K. Cho, B. H. Hong, and K. S. Kim, J. Phys. Chem. Lett. 2, 841 (2011)   DOI   ScienceOn
4 S. J. Kang, B. Kim, K. S. Kim, Y. Zhao, Z Chen, P. Kim, and C. Nuckolls, Adv. Mater. 23, 3531 (2011).   DOI   ScienceOn
5 Y. J. Kim, J. H. Lee, and G. C. Yi, Appl. Phys. Lett. 95, 213101 (2009).   DOI   ScienceOn
6 H. Kim, S. J. Park, Y. Kim, H. Y. Jeong, A. R. Jang, K. S. Kim, S. H. Han, D. H. Yoon, K. S. Suh, H. S. Shin, T. Y. Kim, and W. S. Yang, submitted (2013).
7 A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C. W. Magnuson, and S. McDonnell, Appl. Phys. Lett. 99, 122108 (2011).   DOI   ScienceOn
8 D. Yoon, Y. W. Son, and H. Cheong, Nano Lett. 11, 3227 (2011).   DOI   ScienceOn
9 L. A. Gea and L. A. Boatner, Appl. Phys. Lett. 68, 3081 (1996).   DOI   ScienceOn
10 M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, Science 318, 1750 (2007).   DOI   ScienceOn
11 I. P. Parkin and T. D. J. Manning, Chem. Edu. 83, 393 (2006).   DOI   ScienceOn
12 T. D. Manning, I. P. Parkin, M. E. Pemble, D. Sheel, and D. Vernardou, Chem. Mater. 16, 744 (2004).   DOI   ScienceOn
13 B. Viswanath, C. Ko, Z. Yang, and S. Ramanathan, J. Appl. Phys. 109, 063512 (2011).   DOI   ScienceOn
14 H. Koo, S. Yoon, O. J. Kwon, K. E. Ko, D. Shin, S. H. Bae, S. H. Chang, and C. Park, J. Mater. Sci. 47, 6397 (2012).   DOI
15 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).   DOI   ScienceOn
16 Y. Zhang, T. W. Tan, H. L. Stormer, and P. Kim, Nature 438, 201 (2005).   DOI   ScienceOn
17 J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M van der Zande, J. M. Parpia, H. G. Craighead, and P. L. McEuen, Nano Lett. 8, 2458 (2008).   DOI   ScienceOn
18 C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science 321, 385 (2008).   DOI   ScienceOn
19 S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhang, K. Cho, W. Cai, A. A. Balandin, and R. S. Ruoff, Nature Materials 11, 203 (2012).   DOI   ScienceOn
20 R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Science 320, 1308 (2008).   DOI   ScienceOn
21 K. S. Kim, Z. Yue, H. Jang, S. Y. Lee, J. M. Kim, Kwang. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, Nature 457, 706 (2009).   DOI   ScienceOn
22 M. Cox, A. Gorodetsky, B. Kim, K. S. Kim, Z. Jia, P. Kim, C. Nuckolls, and I. Kymissis, Appl. Phys. Lett. 98, 123303 (2011).   DOI   ScienceOn
23 S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, Kwang. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, Nature Nanotech. 5, 574 (2010).   DOI
24 F. J. Morin, Phys. Rev. Lett. 3, 34 (1959).   DOI
25 A. Zylbersztejn and N. F. Mott, Phys. Rev. B. 11, 4383 (1975).   DOI
26 R. M. Wentzcovitch, W. W. Schulz, and P. B. Allen, Phys. Rev. Lett. 72, 3389 (1994).   DOI   ScienceOn