• Title/Summary/Keyword: Hypoxic-ischemic

Search Result 110, Processing Time 0.023 seconds

Anticonvulsant Therapy in Neonate (신생아 경련성 질환의 항경련제 요법)

  • Yu, Jae-Eun
    • Neonatal Medicine
    • /
    • v.16 no.1
    • /
    • pp.10-17
    • /
    • 2009
  • The immature neonatal brain is susceptible to the development of seizures. Seizures occur in 1% to 5% of infants during the neonatal period. Neonatal seizures are most commonly associated with serious acute illnesses, such as hypoxic-ischemic encephalopathy, birth trauma, metabolic disturbances, or infections. Thus, newborn infants with seizures are at risk for neonatal death and survivors are at risk for neurologic impairment, developmental delay, and subsequent epilepsy. Experimental data have also raised concerns about the potential adverse effects of the currently used anticonvulsants in neonates on brain development. Therefore, in the management of neonatal seizures, confirmatory diagnosis and optimal, but shorter, duration of anticonvulsant therapy is essential. Nevertheless, there has been substantial progress in understanding the developmental mechanisms that influence seizure generation and responsiveness to anticonvulsants. The currently used therapies have limited efficacy and the treatment of neonatal seizures has not significantly changed in the past several decades, This review includes an overview of current approaches to the treatment of neonatal seizures.

Treatment of Acute Renal Failure in Neonate (신생아 급성 신부전의 치료)

  • Lee, Jin-A
    • Neonatal Medicine
    • /
    • v.17 no.2
    • /
    • pp.168-180
    • /
    • 2010
  • Acute renal failure (ARF) is common in the neonatal period, however, there are no uniform treatment strategies of ARF. The main treatment strategies are conservative management including medical treatment and the renal replacement therapy. Because ARF in the newborn is commonly acquired by hypoxic ischemic injury and toxic insults, removal of all the offending causes is important. Aminoglycoside, indomethacin, and amphotericin-B are the most common nephrotoxic drugs of ARF. To relieve the possible prerenal ARF, initial fluid challenge can be followed by diuretics. If there is no response, fluid restriction and correction of electrolyte imbalance should begin. Adequate nutritional support and drug dosing according to the pharmacokinetics of such drugs will be difficult problems. Renal replacement therapies may be provided by peritoneal dialysis, intermittent hemodialysis, or hemofiltration. New promising agents, bioartificial kidney, and stem cell will enable us to extend our therapeutic repertoire.

Contributing Factors on Pharmacokinetic Variability in Critically Ill Neonates (신생아중환자의 약동학적 다양성에 영향을 미치는 요인)

  • An, Sook Hee
    • Korean Journal of Clinical Pharmacy
    • /
    • v.27 no.2
    • /
    • pp.63-68
    • /
    • 2017
  • Neonates have large inter-individual variability in pharmacokinetic parameters of many drugs due to developmental differences. The aim of this study was to investigate the factors affecting the pharmacokinetic parameters of drugs, which are commonly used in critically ill neonates. Factors that reflect physiologic maturation such as gestational age, postnatal age, postconceptional age, birth weight, and current body weight were correlated with pharmacokinetic parameters in neonates, especially preterm infants. Comorbidity characteristics affecting pharmacokinetics in critically ill neonates were perinatal asphyxia, hypoxic ischemic encephalopathy, patent ductus arteriosus (PDA), and renal dysfunction. Administration of indomethacin or ibuprofen in neonates with PDA was associated with the reduced clearance of renally excreted drugs such as vancomycin and amikacin. Therapeutic hypothermia and extracoporeal membrane oxygenation were influencing factors on pharmacokinetic parameters in critically ill neonates. Dosing adjustment and careful monitoring according to the factors affecting pharmacokinetic variability is required for safe and effective pharmacotherapy in neonatal intensive care unit.

Role of Diffusion-weighted MR Imaging in Children with Various Brain Pathologies

  • 최성훈;구현우;고태성;나영신;강신광;김태형
    • Proceedings of the KSMRM Conference
    • /
    • 2003.10a
    • /
    • pp.99-99
    • /
    • 2003
  • To exhibit our clinical experience of diffusion-weighted (DW) MR imaging for various brain pathologies and to determine its role in characterizing brain pathologies in children. DW images in 177 children (M:F=96:81, mean age, 4.7 years) with various brain pathologies were retrospectively collected over past 3 years. DW images (b value: 1000 s/mm) were reviewed along with corresponding apparent diffusion coefficient (ADC) maps. Brain pathologies included cystic or solid brain tumor (n = 55), cerebral infarct (n = 32), cerebritis with or without brain abscess (n = 21), metabolic or toxic brain disorder (n = 19), demyelinating disease (n = 16), hypoxic-ischemic encephalopathy (n = 16), intracerebral hemorrhage including traumatic brain lesion (n = 15), and posterior reversible leukoencephalopathy (n = 3). We reviewed whether DW images and ADCmaps contribute to further characterization of brain pathologies by defining a chronological age of lesions, the presence of cytotoxic edema in lesions, and the nature of cystic lesions.

  • PDF

Clinical Results of Mitral Valve Replacement (승모판 치환술의 임상 성적)

  • Na, Guk-Ju;Kim, Sang-Hyeon;Kim, Gwang-Hyu
    • Journal of Chest Surgery
    • /
    • v.28 no.12
    • /
    • pp.1113-1121
    • /
    • 1995
  • From August, 1986 to December, 1993, mitral valve replacement was performed in 178 patients. Of the valve implanted, 114 were St.Jude Medical, 47 Duromedics, 16 Carpenter-Edward and 1 Ionesc-Shiley. The hospital mortality rate was 2.8%[5 patients and the late mortality rate was 7.5%[13 patients . The causes of hospital death were LV rupture in 1, renal failure in 1, cardiac tamponade in 1, valve malfunction in 1 and hypoxic brain damage in 1. The causes of late death were sudden death in 6, congestive heart failure in 4, brain ischemic injury in 3. Follow-up was done on 155 surviving patients : mean follow-up period was 50.94$\pm$8.04 months. The actual survival rate was 88.2% at 8 years. We concluded, therefore, that good clinical results could be achieved with mitral valve replacement in mid-term follow-up, and long-term follow-up is also necessary.

  • PDF

The Correlation between the Severity of Hypoxic Ischemic Encephalopathy and the Development of Acute Renal Failure in Asphyxiated Neonates (신생아 질식 환아에서 저산소성 허혈 뇌증의 정도와 급성신부전 발생과의 연관성)

  • Park, Sung-Shin;Chung, Sung-Hoon;Song, Jun-Hyuk;Kim, Sun-Kyoung;Cho, Byoung-Soo;Kim, Sung-Do
    • Childhood Kidney Diseases
    • /
    • v.11 no.1
    • /
    • pp.32-40
    • /
    • 2007
  • Purpose : We performed this study to determine the incidence of acute renal failure(ARF) in birth asphyxia and to correlate the severity of asphyxia and hypoxic-ischemic encephalopathy (HIE) and ARF in asphyxiated neonates. Methods : Data was retrospectively collected from the medical records of 33 patients with neonatal asphyxia and of 33 neonates with no asphyxia. On the basis the 5-minute Apgar score, the asphyxiated neonates were further grouped into mild(6 or 7), moderate(4 or 5), and severe asphyxia(3 or less). Asphyxiated neonates with HIE were staged by the Sarnat and Sarnat scoring system. We compared serum creatinine, blood urea nitrogen, electrolytes, and urine output on day 3 of life and the incidence and severity of intraventricular hemorrhage(IVH) between each group. Results : ARF occurred in 8(24.2%) asphyxiated neonates. Of these, 3(37.5%) were oliguric, while 1(10.0%) patient with mild asphyxia, 2(18.2%) of moderate asphyxia, and 5(41.7%) with of severe asphyxia had ARF(P>0.05). One(25%) patient with stage I HIE, 4(50%) with stage II HIE, and 3(75%) of HIE with stage III HIE developed ARF(P<0.01). There was no statistical correlation between the severity of asphyxia and HIE stage. One(7.7%) patient with grade 1 IVE, 0(0.0%) with grade 2 IVH, 2(66.7%) with grade 3 IVH, and 2(100.0%) with grade 4 IVH had ARF(P<0.01). Mortality was higher in asphyxiated neonates with ARF(P<0.05). There was no significant difference between the oliguric and non-oliguric renal failure. Conclusion : We found that the greater the degree of HIE, the higher was the incidence of ARF. Asphyxiated neonates with ARF had a poorer prognosis.

  • PDF

Neuroprotection of Recombinant Human Erythropoietin Via Modulation of N-methyl-D-aspartate Receptors in Neonatal Rats with Hypoxic-ischemic Brain Injury (신생 백서의 저산소성 허혈성 뇌손상에서 NMDA receptor 조절을 통한 유전자 재조합 인 에리스로포이에틴의 신경보호)

  • Jang, Yoon-Jung;Seo, Eok-Su;Kim, Woo-Taek
    • Neonatal Medicine
    • /
    • v.16 no.2
    • /
    • pp.221-233
    • /
    • 2009
  • Purpose: Erythropoietin (EPO) has neuroprotective effects in many animal models of brain injury, including hypoxic-ischemic (HI) encephalopathy, trauma, and excitotoxicity. Current studies have demonstrated the neuroprotective effects of EPO, but limited data are available for the neonatal periods. Here in we investigated whether recombinant human EPO (rHuEPO) can protect the developing rat brain from HI injury via modulation of NMDA receptors. Methods: In an in vitro model, embryonic cortical neuronal cell cultures from Sprague-Dawley (SD) rats at 19-days gestation were established. The cultured cells were divided into five groups: normoxia (N), hypoxia (H), and 1, 10, and 100 IU/mL rHuEPO-treated (H+E1, H+ E10, and H+E100) groups. To estimate cell viability and growth, a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay was done. In an in vivo model, left carotid artery ligation was performed on 7-day-old SD rat pups. The animals were divided into six groups; normoxia control (NC), normoxia Sham-operated (NS), hypoxia-ischemia only (H), hypoxia-ischemia+vehicle (HV), hypoxia-ischemia+rHuEPO before a HI injury (HE-B), and hypoxia-ischemia+rHuEPO after a HI injury (HE-A). The morphologic changes following brain injuries were noted using hematoxylin and eosin (H/E) staining. Real-time PCR using primers of subunits of NMDA receptors (NR1, NR2A, NR2B, NR2C and NR2D) mRNA were performed. Results: Cell viability in the H group was decreased to less than 60% of that in the N group. In the H+E1 and H+E10 groups, cell viability was increased to >80% of the N group, but cell viability in the H+E100 group did not recover. The percentage of the left hemisphere area compared the to the right hemisphere area were 98.9% in the NC group, 99.1% in the NS group, 57.1% in the H group, 57.0% in the HV group, 87.6% in the HE-B group, and 91.6% in the HE-A group. Real-time PCR analysis of the expressions of subunits of NMDA receptors mRNAs in the in vitro and in vivo neonatal HI brain injuries generally revealed that the expression in the H group was decreased compared to the N group and the expressions in the rHuEPO-treated groups was increased compared to the H group. Conclusion: rHuEPO has neuroprotective property in perinatal HI brain injury via modulation of N-methyl-D-aspartate receptors.

The effect of erythropoietin in neonatal rat model of hypoxic-ischemic brain injury (Erythropoietin의 투여가 신생백서 저산소허혈뇌손상에 미치는 영향)

  • Kim, Heng-Mi;Choe, Byung-Ho;Kwon, Soon-Hak;Sohn, Yoon-Kyung
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.1
    • /
    • pp.105-110
    • /
    • 2009
  • Purpose : Perinatal asphyxia is an important cause of neonatal mortality and subsequent lifelong neurodevelopmental handicaps. Although many treatment strategies have been tested, there is currently no clinically effective treatment to prevent or reduce the harmful effects of hypoxia and ischemia in humans. Erythropoietin (Epo) has been shown to exert neuroprotective effects in various brain injury models although the exact mechanisms through which Epo functions are not completely understood. This study investigates the effect of Epo on hypoxic-ischemic (HI) brain injury and the possibility that its neuroprotective actions may be associated with iron-mediated metabolism. Methods : HI brain injury was produced in 7-day-old rats by unilateral carotid artery ligation followed by hypoxia with 8% oxygen for 2 h. At the end of HI brain injury, the rats received an intraperitoneal injection of 5,000 units/kg erythropoietin. Random premedication with iron, deferoxamine, iron-deferoxamine, or saline were performed 23 d before HI brain injury. The severity of the brain injury was assessed at 7 d after HI. Results : Single Epo treatment post-HI brain injury reduced the gross and histopathological findings of brain injury. Iron premedication did not increase the incidence or severity of the injury as measured by the damage score. Deferoxamine administration before HI brain injury improved the brain injury as compared to no treatment or Epo treatment. Conclusion : These findings indicate that Epo provides neuroprotective benefits after HI in the developing brain. These findings suggest that Epos neuroprotective actions may involve reducing iron in tissues that mediate the formation of free radicals.

Contrast-enhanced Magnetic Resonance Imaging of Brain Metastases at 7.0T versus 1.5T: A Preliminary Result

  • Paek, Sun Ha;Kim, Jhi-Hoon;Choi, Sung-Hong;Yoon, Tae-Jin;Son, Young Don;Kim, Dong Gyu;Cho, Zang-Hee;Sohn, Chul-Ho
    • Investigative Magnetic Resonance Imaging
    • /
    • v.19 no.1
    • /
    • pp.31-36
    • /
    • 2015
  • Purpose: To compare the depiction of brain metastases on contrast-enhanced images with 7.0 tesla (T) and at 1.5T MRI. Materials and Methods: Four consecutive patients with brain metastases were scanned on 7.0T whole-body scanner and 1.5T MRI. A 3D T1-weighted gradient echo sequence (3D T1-GRE) at 1.5T (voxel size = $0.9{\times}0.9{\times}1.5mm^3$ after double-dose, gadoterate meglumine, Gd-DOTA) was compared to a 7.0T 3D T1-GRE sequence (voxel size = $0.4{\times}0.4{\times}0.8mm^3$, single-dose Gd-DOTA) in four patients after a 5 minute delay. The number of contrast-enhancing metastases in MPRAGE images was compared in each patient by two radiologists in consensus. We measured contrast ratio of enhancing brain metastases and white matter in 1.5T and 7.0T. Results: In all four patients 7.0T 3D T1-GRE images after single-dose Gd-DOTA and 1.5T after double-dose Gd-DOTA depicted 11 brain metastases equally. In the quantitative analysis of contrast ratios of enhancing brain metastases and white matter, the 1.5T 3D T1-GRE after double-dose showed an increased contrast ratio compared to 7.0T 3D T1-GRE after single-dose ($0.961{\pm}0.571$ versus $0.885{\pm}0.494$; n = 11 metastases). But this difference was not statistically significant (P = 0.711). Conclusion: Our preliminary results indicate that 7.0T single-dose Gd-enhanced images were not different to 1.5T double-dose Gd-enhanced images for the detection of brain metastases.

Serum Liver Enzyme Pattern in Birth Asphyxia Associated Liver Injury

  • Chhavi, Nanda;Zutshi, Kiran;Singh, Niranjan Kumar;Awasthi, Ashish;Goel, Amit
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.17 no.3
    • /
    • pp.162-169
    • /
    • 2014
  • Purpose: To study temporal pattern of serum liver enzymes levels in newborns with hepatic injury associated with birth asphyxia (BA). Methods: Singleton term newborns with BA and ${\leq}72$ hours of age admitted to neonatal intensive care unit were prospectively enrolled. Term newborns with physiological jaundice and without BA were studied as controls. Serum liver enzymes were measured at <24 hours, 24-72 hours, and at 6-12 days of age for cases and at 1-6 days of age for controls. BA was defined by 1 minute Apgar score <7 or delayed or absent cry with hypoxic ischemic encephalopathy. BA-associated liver injury was defined as serum alanine aminotransferase (ALT) elevation beyond +2 standard deviation (ALT > +2 SD) above the mean of control subjects at any of the three time points. Results: Sixty controls and 62 cases were enrolled. Thirty-five cases (56%) developed BA-associated liver injury (ALT>81 IU/L). They had higher serum levels of ALT, aspartate aminotransferase, lactate dehydrogenase than the control infants, with peak at 24-72 hours. In controls, serum liver enzyme levels were significantly higher in appropriate-for-date (AFD) babies than small-for-date (SFD) babies. Serum enzyme pattern and extent of elevation were comparable between SFD and AFD babies. Degree of serum liver enzyme elevation had no relationship with severity of hypoxic encephalopathy. Conclusion: Serum liver enzyme elevation is common in BA; it peaks at 24-72 hours followed by a sharp decline by 6-12 days of age. Pattern and extent of enzyme elevation are comparable between SFD and AFD babies.