DOI QR코드

DOI QR Code

The effect of erythropoietin in neonatal rat model of hypoxic-ischemic brain injury

Erythropoietin의 투여가 신생백서 저산소허혈뇌손상에 미치는 영향

  • Kim, Heng-Mi (Department of Pediatrics, College of Medicine, Kyungpook National University) ;
  • Choe, Byung-Ho (Department of Pediatrics, College of Medicine, Kyungpook National University) ;
  • Kwon, Soon-Hak (Department of Pediatrics, College of Medicine, Kyungpook National University) ;
  • Sohn, Yoon-Kyung (Department of Pathology, College of Medicine, Kyungpook National University)
  • 김행미 (경북대학교 의과대학 소아과학교실) ;
  • 최병호 (경북대학교 의과대학 소아과학교실) ;
  • 권순학 (경북대학교 의과대학 소아과학교실) ;
  • 손윤경 (경북대학교 의과대학 병리학교실)
  • Received : 2008.07.29
  • Accepted : 2008.09.05
  • Published : 2009.01.15

Abstract

Purpose : Perinatal asphyxia is an important cause of neonatal mortality and subsequent lifelong neurodevelopmental handicaps. Although many treatment strategies have been tested, there is currently no clinically effective treatment to prevent or reduce the harmful effects of hypoxia and ischemia in humans. Erythropoietin (Epo) has been shown to exert neuroprotective effects in various brain injury models although the exact mechanisms through which Epo functions are not completely understood. This study investigates the effect of Epo on hypoxic-ischemic (HI) brain injury and the possibility that its neuroprotective actions may be associated with iron-mediated metabolism. Methods : HI brain injury was produced in 7-day-old rats by unilateral carotid artery ligation followed by hypoxia with 8% oxygen for 2 h. At the end of HI brain injury, the rats received an intraperitoneal injection of 5,000 units/kg erythropoietin. Random premedication with iron, deferoxamine, iron-deferoxamine, or saline were performed 23 d before HI brain injury. The severity of the brain injury was assessed at 7 d after HI. Results : Single Epo treatment post-HI brain injury reduced the gross and histopathological findings of brain injury. Iron premedication did not increase the incidence or severity of the injury as measured by the damage score. Deferoxamine administration before HI brain injury improved the brain injury as compared to no treatment or Epo treatment. Conclusion : These findings indicate that Epo provides neuroprotective benefits after HI in the developing brain. These findings suggest that Epos neuroprotective actions may involve reducing iron in tissues that mediate the formation of free radicals.

목적 : 신생 백서의 저산소 허혈 뇌손상에 있어서의 erythropietin (Epo) 투여의 손상 예방 효과와 보호 기전에 철 대사가 관여하는지를 조사하고자 하였다. 방 법 : 신생 백서를 암수 구별 없이 생후 7일째에 편측 온목동맥 결찰 후 산소 농도 8%인 환경에 2시간 노출시켜 저산소 허혈을 유도하였으며 저산소 노출 직후 Epo 5,000 u/kg를 복강내 투여하였다. 이들은 저산소 허혈 유도 전 투여한 생리식염수, 철, deferoxamine 등에 따라 Epo군, Iron+Epo군, Def+Epo군, Iron+ Def+Epo군, 대조군으로 나누어 저산소 허혈 유도 후 7일에 뇌손상 정도를 비교하였다. 결 과 : Epo 투여시 뇌손상의 빈도와 정도는 대조군에 비해 감소하였다. 뇌손상의 빈도와 손상 점수로 뇌손상 정도를 비교한 결과 철 투여는 Epo의 뇌손상 예방 효과를 감소시키지 않았다. Deferoxamine 투여는 Epo 단독 투여군에 비해 뇌손상의 빈도와 정도가 경감하였으나 통계적 유의성은 없었다. 결 론 : Epo는 저산소 허혈 뇌손상에 있어 뇌손상 보호 효과를 보인다. 철 투여는 뇌손상을 악화시키지 않았으나 deferoxamine 동시 투여는 Epo 단독 투여에 비해 뇌손상의 빈도와 손상 점수가 감소하여 뇌손상 보호 효과에 철 대사가 관여할 가능성을 제시하였다.

Keywords

References

  1. Grow J, Barks J. Pathogenesis of hypoxic-ischemic cerebral injury in the term infant : current concepts. Clin Perinatol 2002;29:585-602 https://doi.org/10.1016/S0095-5108(02)00059-3
  2. Juul S. Recombinant erythropoietin as a neuroprotective treatment : in vitro and in vivo models. Clin Perinatol 2004; 31:129-42 https://doi.org/10.1016/j.clp.2004.03.004
  3. Alafaci C, Salpietro F, Grasso G, Sfacteria A, Passalacqua M, Morabito A, et al. Effect of recombinant human erythropoietin on cerebral ischemia following experimental subarachnoid hemorrhage. Eur J Pharmacol 2000;406:219-25 https://doi.org/10.1016/S0014-2999(00)00691-9
  4. Catania MA, Marciano MC, Parisi A, Sturiale A, Buemi M, Grasso G, et al. Erythropoietin prevents cognition impairment induced by transient brain ischemia in gerbils. Eur J Pharmacol 2002;437:147-50 https://doi.org/10.1016/S0014-2999(02)01292-X
  5. Akisu M, Tuzun S, Arslanoglu S, Yalaz M, Kultursay N. Effect of recombinant human erythropoietin administration on lipid peroxidation and antioxidant enzyme(s) activities in preterm infants. Acta Med Okayama 2001;55:357-62
  6. Aydin A, Genc Kurdad, Akhisaroglu M, Yorukoglu Kutsal, Gokmen Necati, Gonullu Erdem. Erythropoietin exerts neuroprotective effect in neonatal rat model of hypoxic-ischemic brain injury. Brain Dev 2003;27:494-8 https://doi.org/10.1016/S0387-7604(03)00039-1
  7. Buonocore G, Perrone S, Longini M, Paffetti P, Vezzosi P, Gatti MG, et al R. Non protein bound iron as early predictive marker of neonatal brain damage. Brain 2003;126:1224-30 https://doi.org/10.1093/brain/awg116
  8. Kling PJ, Winzerling JJ. Iron status and the treatment of the anemia of prematurity. Clin Perinatol 2002;29:283-94 https://doi.org/10.1016/S0095-5108(02)00002-7
  9. Cataltepe O, Vannucci RC, Heitjan DF, Towfighi J. Effect of status epilepticus on hypoxic-ischemic brain damage in the immature rat. Pediatr Res 1995;38:251-7
  10. Buonocore G, Perrone S. Biomarkers of hypoxic brain injury in the neonate. Clin Perinatol 2004;31:107-16 https://doi.org/10.1016/j.clp.2004.03.008
  11. Heffner JE, Repine JE. Pulmonary strategies of antioxidant defense. Am Rev Respir Dis 1989;140:531-54
  12. Vamvakas EC, Strauss RG. Meta-analysis of controlled clinical trials studying the efficacy of rHuEPO in reducing blood transfusions in the anemia of prematurity. Transfusion 2001;41:406-15 https://doi.org/10.1046/j.1537-2995.2001.41030406.x
  13. Juul SE, Yachnis AT, Christensen RD.Tissue distribution of erythropoietin and erythropoietin receptor in the developing human fetus. Early Hum Dev 1998;52:235-49 https://doi.org/10.1016/S0378-3782(98)00030-9
  14. Yu X, Shacka JJ, Eells JB, Suarez-Quian C, Przygodzki RM, Beleslin-Cokic B, et al. Erythropoietin receptor signalling is required for normal brain development. Development 2002; 129:505-16
  15. Romsi P, Ronka E, Kiviluoma K, Vainionpaa V, Hirvonen J, Mennander A, et al. Potential neuroprotective benefits of erythropoietin during experimental hypothermic circulatory arrest. J Thorac Cardiovasc Surg 2002;124:714-23 https://doi.org/10.1067/mtc.2002.123704
  16. Wiessner C, Allegrini PR, Ekatodramis D, Jewell UR, Stallmach T, Gassmann M. Increased cerebral infarct volumes in polyglobulic mice overexpressing erythropoietin. J Cereb Blood Flow Metab 2001;21:857-64 https://doi.org/10.1097/00004647-200107000-00011
  17. Weber A, Dzietko M, Berns M, Felderhoff-Mueser U, Heinemann U, Maier RF, et al. Neuronal damage after moderate hypoxia and erythropoietin. Neurobiol Dis 2005;20:594- 600 https://doi.org/10.1016/j.nbd.2005.04.016
  18. Siren AL, Fratelli M, Brines M, Goemans C, Casagrande S, Lewczuk P, et al. Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress. Proc Natl Acad Sci U S A 2001;98:4044-9 https://doi.org/10.1073/pnas.051606598
  19. Celik M, Gokmen N, Erbayraktar S, Akhisaroglu M, Konakc S, Ulukus C, et al. Erythropoietin prevents motor neuron apoptosis and neurologic disability in experimental spinal cord ischemic injury. Proc Natl Acad Sci U S A 2002;99:2258-63 https://doi.org/10.1073/pnas.042693799
  20. Spandou E, Papadopoulou Z, Soubasi V, Karkavelas G, Simeonidou C, Pazaiti A, et al. Erythropoietin prevents long- term sensorimotor deficits and brain injury following neonatal hypoxia-ischemia in rats. Brain Res 2005;1045:22-30
  21. Barker DJ, Eriksson JG, Forsen T, Osmond C. Fetal origins of adult disease: strength of effects and biological basis. Int J Epidemiol 2002;31:1235-9 https://doi.org/10.1093/ije/31.6.1235
  22. Saugstad OD. Bronchopulmonary dysplasia-oxidative stress and antioxidants. Semin Neonatol 2003;8:39-49 https://doi.org/10.1016/S1084-2756(02)00194-X
  23. Liachenko S, Tang P, Xu Y. Deferoxamine Improves Early Postresuscitation Reperfusion After Prolonged Cardiac Arrest in Rats. J Cereb Blood Flow Metab 2003;23:574-81 https://doi.org/10.1097/01.WCB.0000057742.00152.3F
  24. Shadid M, Moison R, Steendijk P, Hiltermann L, Berger HM, van Bel F. The effect of antioxidative combination therapy on post hypoxic-ischemic perfusion, metabolism, and electrical activity of the newborn brain. Pediatr Res 1998;44:119-24 https://doi.org/10.1203/00006450-199807000-00019
  25. Blanco LN, Frank L. The formation of alveoli in rat lung during the third and fourth postnatal weeks: effect of hyperoxia, dexamethasone, and deferoxamine. Pediatr Res 1993;34:334-40
  26. Feng Y, LeBlanc MH, LeBlanc EB, Parker CC, Fratkin JD, Qian XB, et al. Desmethyl tirilazad improves neurologic function after hypoxic ischemic brain injury in piglets. Crit Care Med 2000;28:1431-8 https://doi.org/10.1097/00003246-200005000-00029
  27. Legssyer R, Geisser P, McArdle H, Crichton RR, Ward RJ. Comparison of injectable iron complexes in their ability to iron load tissues and to induce oxidative stress. Biometals 2003;16:425-33 https://doi.org/10.1023/A:1022547819506

Cited by

  1. Pharmacological Approaches in Newborn Infants with Hypoxic Ischemic Encephalopathy vol.20, pp.3, 2009, https://doi.org/10.5385/nm.2013.20.3.335