• Title/Summary/Keyword: Hyperspectral Remote Sensing

Search Result 166, Processing Time 0.027 seconds

Current Status of Hyperspectral Remote Sensing: Principle, Data Processing Techniques, and Applications (초분광 원격탐사의 특성, 처리기법 및 활용 현용)

  • Kim Sun-Hwa;Ma Jung-Rim;Kook Min-Jung;Lee Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.4
    • /
    • pp.341-369
    • /
    • 2005
  • Hyperspectral images have emerged as a new and promising remote sensing data that can overcome the limitations of existing optical image data. This study was designed to provide a comprehensive review on definition, data processing methods, and applications of hyperspectral data. Various types of airborne, spaceborne, and field hyperspectral image sensors were surveyed from the available literatures and internet search. To understand the current status of hyperspectral remote sensing technology and research development, we collected several hundreds research papers from international journals (IEEE Transactions on Geoscience and Remote Sensing, International Journal of Remote Sensing, Remote Sensing of Environment and AVIRIS Workshop Proceedings), and categorized them by sensor types, data processing techniques, and applications. Although several hyperspectral sensors have been developing, AVIRIS has been a primary data source that the most hyperspectral remote sensing researches were relied on. Since hyperspectral data have very large data volume with many spectral bands, several data processing techniques that are particularly oriented to hyperspectral data have been developed. Although atmospheric correction, spectral mixture analysis, and spectral feature extraction are among those processing techniques, they are still in experimental stage and need further refinement until the fully operational adaptation. Geology and mineral exploration were major application in early stage of hyperspectral sensing because of the distinct spectral features of rock and minerals that could be easily observed with hyperspectral data. The applications of hyperspectral sensing have been expanding to vegetation, water resources, and military areas where the multispectral sensing was not very effective to extract necessary information.

Hyperspectral Remote Sensing for Agriculture in Support of GIS Data

  • Zhang, Bing;Zhang, Xia;Liu, Liangyun;Miyazaki, Sanae;Kosaka, Naoko;Ren, Fuhu
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1397-1399
    • /
    • 2003
  • When and Where, What kind of agricultural products will be produced and provided for the market? It is a commercial requirement, and also an academic questions to remote sensing technology. Crop physiology analysis and growth monitoring are important elements for precision agriculture management. Remote sensing technology supplies us more selections and available spaces in this dynamic change study by producing images of different spatial, spectral and temporal resolutions. Especially, the hyperspectral remote sensing should do play a key role in crop growth investigation at national, regional and global scales. In the past five years, Chinese academy of sciences and Japan NTT-DATA have made great efforts to establish a prototype information service system to dynamically survey the vegetable planting situation in Nagano area of Japan mainly based on remote sensing data. For such concern, a flexible and light-duty flight system and some practical data processing system and some necessary background information should be rationally made together. In addition, some studies are also important, such as quick pre-processing for hyperspectral data, Multi-temporal vegetation index analysis, hyperspectral image classification in support of GIS data, etc. In this paper, several spectral data analysis models and a designed airborne platform are provided and discussed here.

  • PDF

Outdoor Applications of Hyperspectral Imaging Technology for Monitoring Agricultural Crops: A Review

  • Ahmed, Mohammad Raju;Yasmin, Jannat;Mo, Changyeun;Lee, Hoonsoo;Kim, Moon S.;Hong, Soon-Jung;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.41 no.4
    • /
    • pp.396-407
    • /
    • 2016
  • Background: Although hyperspectral imaging was originally introduced for military, remote sensing, and astrophysics applications, the use of analytical hyperspectral imaging techniques has been expanded to include monitoring of agricultural crops and commodities due to the broad range and highly specific and sensitive spectral information that can be acquired. Combining hyperspectral imaging with remote sensing expands the range of targets that can be analyzed. Results: Hyperspectral imaging technology can rapidly provide data suitable for monitoring a wide range of plant conditions such as plant stress, nitrogen status, infections, maturity index, and weed discrimination very rapidly, and its use in remote sensing allows for fast spatial coverage. Conclusions: This paper reviews current research on and potential applications of hyperspectral imaging and remote sensing for outdoor field monitoring of agricultural crops. The instrumentation and the fundamental concepts and approaches of hyperspectral imaging and remote sensing for agriculture are presented, along with more recent developments in agricultural monitoring applications. Also discussed are the challenges and limitations of outdoor applications of hyperspectral imaging technology such as illumination conditions and variations due to leaf and plant orientation.

ENHANCEMENT AND SMOOTHING OF HYPERSPECTAL REMOTE SENSING DATA BY ADVANCED SCALE-SPACE FILTERING

  • Konstantinos, Karantzalos;Demetre, Argialas
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.736-739
    • /
    • 2006
  • While hyperspectral data are very rich in information, their processing poses several challenges such as computational requirements, noise removal and relevant information extraction. In this paper, the application of advanced scale-space filtering to selected hyperspectral bands was investigated. In particular, a pre-processing tool, consisting of anisotropic diffusion and morphological leveling filtering, has been developed, aiming to an edge-preserving smoothing and simplification of hyperspectral data, procedures which are of fundamental importance during feature extraction and object detection. Two scale space parameters define the extent of image smoothing (anisotropic diffusion iterations) and image simplification (scale of morphological levelings). Experimental results demonstrated the effectiveness of the developed scale space filtering for the enhancement and smoothing of hyperspectral remote sensing data and their advantage against watershed over-segmentation problems and edge detection.

  • PDF

Integrating Spatial Proximity with Manifold Learning for Hyperspectral Data

  • Kim, Won-Kook;Crawford, Melba M.;Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.6
    • /
    • pp.693-703
    • /
    • 2010
  • High spectral resolution of hyperspectral data enables analysis of complex natural phenomena that is reflected on the data nonlinearly. Although many manifold learning methods have been developed for such problems, most methods do not consider the spatial correlation between samples that is inherent and useful in remote sensing data. We propose a manifold learning method which directly combines the spatial proximity and the spectral similarity through kernel PCA framework. A gain factor caused by spatial proximity is first modelled with a heat kernel, and is added to the original similarity computed from the spectral values of a pair of samples. Parameters are tuned with intelligent grid search (IGS) method for the derived manifold coordinates to achieve optimal classification accuracies. Of particular interest is its performance with small training size, because labelled samples are usually scarce due to its high acquisition cost. The proposed spatial kernel PCA (KPCA) is compared with PCA in terms of classification accuracy with the nearest-neighbourhood classification method.

Application of Hyperion Hyperspectral Remote Sensing Data for Wildfire Fuel Mapping

  • Yoon, Yeo-Sang;Kim, Yong-Seung
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.1
    • /
    • pp.21-32
    • /
    • 2007
  • Fire fuel map is one of the most critical factors for planning and managing the fire hazard and risk. However, fuel mapping is extremely difficult because fuel properties vary at spatial scales, change depending on the seasonal situations and are affected by the surrounding environment. Remote sensing has potential to reduce the uncertainty in mapping fuels and offers the best approach for improving our abilities. Especially, Hyperspectral sensor have a great potential for mapping vegetation properties because of their high spectral resolution. The objective of this paper is to evaluate the potential of mapping fuel properties using Hyperion hyperspectral remote sensing data acquired in April, 2002. Fuel properties are divided into four broad categories: 1) fuel moisture, 2) fuel green live biomass, 3) fuel condition and 4) fuel types. Fuel moisture and fuel green biomass were assessed using canopy moisture, derived from the expression of liquid water in the reflectance spectrum of plants. Fuel condition was assessed using endmember fractions from spectral mixture analysis (SMA). Fuel types were classified by fuel models based on the results of SMA. Although Hyperion imagery included a lot of sensor noise and poor performance in liquid water band, the overall results showed that Hyperion imagery have good potential for wildfire fuel mapping.

A Study on Estimation Method for $CO_2$ Uptake of Vegetation using Airborne Hyperspectral Remote Sensing

  • Endo, Takahiro;Yonekawa, Satoshi;Tamura, Masayuki;Yasuoka, Yoshifumi
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1076-1080
    • /
    • 2003
  • $CO_2$ uptake of vegetation is one of the important variables in order to estimate photosynthetic activity, plant growth and carbon budget estimations. The objective of this research was to develop a new estimation method of $CO_2$ uptake of vegetation based on airborne hyperspectral remote sensing measurements in combination with a photosynthetic rate curve model. In this study, a compact airborne spectrographic imager (CASI) was used to obtain image over a field that had been set up to study the $CO_2$ uptake of corn on August 7, 2002. Also, a field survey was conducted concurrently with the CASI overpass. As a field survey, chlorophyll a content, photosynthetic rate curve, Leaf area, dry biomass and light condition were measured. The developed estimation method for $CO_2$ uptake consists of three major parts: a linear mixture model, an enhanced big leaf model and a photosynthetic rate curve model. The Accuracy of this scheme indicates that $CO_2$ uptake of vegetation could be estimated by using airborne hyperspectral remote sensing data in combination with a physiological model.

  • PDF

Study on the Relationship between the Forest Canopy Closure and Hyperspectral Signatures

  • Lin, Chinsu;Chang, Chein-I
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.72-74
    • /
    • 2003
  • Forest canopy density is an ideal representative of the forest habitat situations. It can directly or indirectly depict the canopy structure and gap size in the forestland, thus could be applied to assessment of wildlife’s diversit y. Since population survey of vegetation and wildlife diversities is a key issue for sustainable forest ecosystem management, many research efforts have been focused on forest canopy density using multispectral data in the last two decades. Unfortunately, prediction of canopy density using large scaling remote sensing data remains a challenging issue. Due to recent advances in hyperspectral image sensors hyperspectral imagery is now available for environmental monitoring. In this paper, we conduct experiments to monitor complicated environments of forestland that can be captured by using hyperspectral imagery and further be analyzed to test a prediction model of forest canopy density. The results show that 95% of canopy density could be well described by using 2 difference vegetation indices (DVIs), which are difference of blue and green reflectances rband_100-rband_150 and difference of 2 short wave infrared reflectancse rband_406-rband_410 With the wavelengths of band no. 100, 150, 406, and 410 specified by 462.39 nm, 534.40 nm, 918.22 nm and 924.41 nm respectively.

  • PDF

An Assessment of a Random Forest Classifier for a Crop Classification Using Airborne Hyperspectral Imagery

  • Jeon, Woohyun;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.1
    • /
    • pp.141-150
    • /
    • 2018
  • Crop type classification is essential for supporting agricultural decisions and resource monitoring. Remote sensing techniques, especially using hyperspectral imagery, have been effective in agricultural applications. Hyperspectral imagery acquires contiguous and narrow spectral bands in a wide range. However, large dimensionality results in unreliable estimates of classifiers and high computational burdens. Therefore, reducing the dimensionality of hyperspectral imagery is necessary. In this study, the Random Forest (RF) classifier was utilized for dimensionality reduction as well as classification purpose. RF is an ensemble-learning algorithm created based on the Classification and Regression Tree (CART), which has gained attention due to its high classification accuracy and fast processing speed. The RF performance for crop classification with airborne hyperspectral imagery was assessed. The study area was the cultivated area in Chogye-myeon, Habcheon-gun, Gyeongsangnam-do, South Korea, where the main crops are garlic, onion, and wheat. Parameter optimization was conducted to maximize the classification accuracy. Then, the dimensionality reduction was conducted based on RF variable importance. The result shows that using the selected bands presents an excellent classification accuracy without using whole datasets. Moreover, a majority of selected bands are concentrated on visible (VIS) region, especially region related to chlorophyll content. Therefore, it can be inferred that the phenological status after the mature stage influences red-edge spectral reflectance.