• Title/Summary/Keyword: Hypernym-Hyponym

Search Result 11, Processing Time 0.025 seconds

Alignment of Hypernym-Hyponym Noun Pairs between Korean and English, Based on the EuroWordNet Approach (유로워드넷 방식에 기반한 한국어와 영어의 명사 상하위어 정렬)

  • Kim, Dong-Sung
    • Language and Information
    • /
    • v.12 no.1
    • /
    • pp.27-65
    • /
    • 2008
  • This paper presents a set of methodologies for aligning hypernym-hyponym noun pairs between Korean and English, based on the EuroWordNet approach. Following the methods conducted in EuroWordNet, our approach makes extensive use of WordNet in four steps of the building process: 1) Monolingual dictionaries have been used to extract proper hypernym-hyponym noun pairs, 2) bilingual dictionary has converted the extracted pairs, 3) Word Net has been used as a backbone of alignment criteria, and 4) WordNet has been used to select the most similar pair among the candidates. The importance of this study lies not only on enriching semantic links between two languages, but also on integrating lexical resources based on a language specific and dependent structure. Our approaches are aimed at building an accurate and detailed lexical resource with proper measures rather than at fast development of generic one using NLP technique.

  • PDF

A Framework for WordNet-based Word Sense Disambiguation (워드넷 기반의 단어 중의성 해소 프레임워크)

  • Ren, Chulan;Cho, Sehyeong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.4
    • /
    • pp.325-331
    • /
    • 2013
  • This paper a framework and method for resolving word sense disambiguation and present the results. In this work, WordNet is used for two different purposes: one as a dictionary and the other as an ontology, containing the hierarchical structure, representing hypernym-hyponym relations. The advantage of this approach is twofold. First, it provides a very simple method that is easily implemented. Second, we do not suffer from the lack of large corpus data which would have been necessary in a statistical method. In the future this can be extended to incorporate other relations, such as synonyms, meronyms, and antonyms.

Searching Animation Models with a Lexical Ontology for Text Animation (온톨로지를 이용한 텍스트 애니메이션 객체 탐색)

  • Chang, Eun-Young;Lee, Hee-Jin;Park, Jong-C.
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.469-474
    • /
    • 2007
  • 텍스트 애니메이션 시스템에서는 자연언어 단어로 표현된 개체들을 한정된 수의 애니메이션 모델로 나타낸다. 그러나 자연언어 단어의 수에 비해 기존의 모델DB에 있는 모델의 수가 훨씬 적은 것이 일반적이기 때문에 해당 단어에 대응되는 애니메이션 모델이 존재하지 않는 경우가 있게 된다. 이러한 경우, 해당 단어가 가지는 의미를 최대한 보존할 수 있는 대체 모델을 찾을 수 있는 방법이 필요하다. 본 논문은 애니메이션에서 캐릭터 또는 사물로 표현되어야 하는 명사에 대해, 온톨로지에서 해당 명사와 상위(hypernym), 하위(hyponym), 부분(member meronymy) 관계에 있는 다른 단어를 탐색하여 적절한 모델을 찾는 방안을 제안한다.

  • PDF

A Study of the Automatic Extraction of Hypernyms arid Hyponyms from the Corpus (코퍼스를 이용한 상하위어 추출 연구)

  • Pang, Chan-Seong;Lee, Hae-Yun
    • Korean Journal of Cognitive Science
    • /
    • v.19 no.2
    • /
    • pp.143-161
    • /
    • 2008
  • The goal of this paper is to extract the hyponymy relation between words in the corpus. Adopting the basic algorithm of Hearst (1992), I propose a method of pattern-based extraction of semantic relations from the corpus. To this end, I set up a list of hypernym-hyponym pairs from Sejong Electronic Dictionary. This list is supplemented with the superordinate-subordinate terms of CoroNet. Then, I extracted all the sentences from the corpus that include hypemym-hyponym pairs of the list. From these extracted sentences, I collected all the sentences that contain meaningful constructions that occur systematically in the corpus. As a result, we could obtain 21 generalized patterns. Using the PERL program, we collected sentences of each of the 21 patterns. 57% of the sentences are turned out to have hyponymy relation. The proposed method in this paper is simpler and more advanced than that in Cederberg and Widdows (2003), in that using a word net or an electronic dictionary is generally considered to be efficient for information retrieval. The patterns extracted by this method are helpful when we look fer appropriate documents during information retrieval, and they are used to expand the concept networks like ontologies or thesauruses. However, the word order of Korean is relatively free and it is difficult to capture various expressions of a fired pattern. In the future, we should investigate more semantic relations than hyponymy, so that we can extract various patterns from the corpus.

  • PDF

A Homonym Disambiguation System based on Semantic Information Extracted from Dictionary Definitions (사전의 뜻풀이말에서 추출한 의미정보에 기반한 동형이의어 중의성 해결 시스템)

  • Hur, Jeong;Ock, Cheol-Young
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.9
    • /
    • pp.688-698
    • /
    • 2001
  • A homonym could be disambiguated by anther words in the context such as nouns, predicates used with the homonym. This paper proposes a homonym disambiguation system based on statistical semantic information which is extracted from definitions in dictionary. The semantic information consists of nouns and predicates that are used with the homonym in definitions. In order to extract accurate semantic information, definitions are used with the homonym in definitions. In order to extract accurate semantic information, definitions are classified into two types. One has hyponym-hypernym relation between title word and head word (homonym) in definition. The hyponym-hypernym relation is one level semantic hierarchy and can be extended to deeper levels in order to overcome the problem of data sparseness. The other is the case that the homonym is used in the middle of definition. The system considers nouns and predicates simultaneously to disambiguate the homonym. Nine homonyms are examined in order to determine the weight of nouns and predicates which affect accrutacy of homonym disambiguation. From experiments using training corpus(definitions in dictionary), the average accruracy of homonym disamguation is 96.11% when the weight is 0.9 and 0.1 for noun and verb respectively. And another experiment to meaure the generality of the homonym disambiguation system results in the 80.73% average accuracy to 1,796 untraining sentences from Korean Information Base I and ETRI corpus.

  • PDF

Extracting and Utilizing is-a Relation Patterns for Question Answering System (자연어 질의응답 시스템을 위한 is-a 관계 패턴의 구축과 활용)

  • Shim, Bo-Jun;Ko, Yung-Joong;Kim, Hark-Soo;Seo, Jung-Yun
    • Annual Conference on Human and Language Technology
    • /
    • 2004.10d
    • /
    • pp.181-188
    • /
    • 2004
  • 대다수의 개방영역 자연어 질의응답 시스템은 답을 선택할 수 있는 개념영역을 미리 정의하고 있기 때문에 시스템이 준비하지 못한 범주의 개념을 묻는 질의문에 대해서는 올바른 응답을 생성하지 못하거나 예외 처리 방식으로 응답을 생성해 낸다. 본 논문에서는 전형적인 범주에 속하지 않는 명사 개념에 관한 질의문에 대해 범용적으로 대응할 수 있는 개방영역 자연어 질의응답 시스템을 제안한다. 제안하는 시스템은 상위 개념 명사구(Hypernym)에 포함되는 하위 개념의 명사구(Hyponym)들을 추출할 수 있는 일반적인 패턴들을 그 신뢰도와 함께 가지고 있다. 따라서 질의문이 임의의 명사구 개념을 요청할 때 정답의 후보들을 동적으로 생성되는 가상의 is-a 의미관계 사전으로부터 신뢰 순위로 정렬하여 추출해 낼 수가 있다. 제안하는 시스템은 "What 명사구 동사구" 형태의 질의문들 중에서 개체명 인식기나 시소러스를 이용하여 정답 후보를 손쉽게 생성할 수 있는 질의문을 배제한 실험용 질의문 집합을 이용한 실험에서 42%의 재현율을 보였다.

  • PDF

Word Sense Disambiguation Using Knowledge Embedding (지식 임베딩 심층학습을 이용한 단어 의미 중의성 해소)

  • Oh, Dongsuk;Yang, Kisu;Kim, Kuekyeng;Whang, Taesun;Lim, Heuiseok
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.272-275
    • /
    • 2019
  • 단어 중의성 해소 방법은 지식 정보를 활용하여 문제를 해결하는 지식 기반 방법과 각종 기계학습 모델을 이용하여 문제를 해결하는 지도학습 방법이 있다. 지도학습 방법은 높은 성능을 보이지만 대량의 정제된 학습 데이터가 필요하다. 반대로 지식 기반 방법은 대량의 정제된 학습데이터는 필요없지만 높은 성능을 기대할수 없다. 최근에는 이러한 문제를 보완하기 위해 지식내에 있는 정보와 정제된 학습데이터를 기계학습 모델에 학습하여 단어 중의성 해소 방법을 해결하고 있다. 가장 많이 활용하고 있는 지식 정보는 상위어(Hypernym)와 하위어(Hyponym), 동의어(Synonym)가 가지는 의미설명(Gloss)정보이다. 이 정보의 표상을 기존의 문장의 표상과 같이 활용하여 중의성 단어가 가지는 의미를 파악한다. 하지만 정확한 문장의 표상을 얻기 위해서는 단어의 표상을 잘 만들어줘야 하는데 기존의 방법론들은 모두 문장내의 문맥정보만을 파악하여 표현하였기 때문에 정확한 의미를 반영하는데 한계가 있었다. 본 논문에서는 의미정보와 문맥정보를 담은 단어의 표상정보를 만들기 위해 구문정보, 의미관계 그래프정보를 GCN(Graph Convolutional Network)를 활용하여 임베딩을 표현하였고, 기존의 모델에 반영하여 문맥정보만을 활용한 단어 표상보다 높은 성능을 보였다.

  • PDF

Semi-automatic Ontology Modeling for VOD Annotation for IPTV (IPTV의 VOD 어노테이션을 위한 반자동 온톨로지 모델링)

  • Choi, Jung-Hwa;Heo, Gil;Park, Young-Tack
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.7
    • /
    • pp.548-557
    • /
    • 2010
  • In this paper, we propose a semi-automatic modeling approach of ontology to annotate VOD to realize the IPTV's intelligent searching. The ontology is made by combining partial tree that extracts hypernym, hyponym, and synonym of keywords related to a service domain from WordNet. Further, we add to the partial tree new keywords that are undefined in WordNet, such as foreign words and words written in Chinese characters. The ontology consists of two parts: generic hierarchy and specific hierarchy. The former is the semantic model of vocabularies such as keywords and contents of keywords. They are defined as classes including property restrictions in the ontology. The latter is generated using the reasoning technique by inferring contents of keywords based on the generic hierarchy. An annotation generates metadata (i.e., contents and genre) of VOD based on the specific hierarchy. The generic hierarchy can be applied to other domains, and the specific hierarchy helps modeling the ontology to fit the service domain. This approach is proved as good to generate metadata independent of any specific domain. As a result, the proposed method produced around 82% precision with 2,400 VOD annotation test data.

Detection of Character Emotional Type Based on Classification of Emotional Words at Story (스토리기반 저작물에서 감정어 분류에 기반한 등장인물의 감정 성향 판단)

  • Baek, Yeong Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.9
    • /
    • pp.131-138
    • /
    • 2013
  • In this paper, I propose and evaluate the method that classifies emotional type of characters with their emotional words. Emotional types are classified as three types such as positive, negative and neutral. They are selected by classification of emotional words that characters speak. I propose the method to extract emotional words based on WordNet, and to represent as emotional vector. WordNet is thesaurus of network structure connected by hypernym, hyponym, synonym, antonym, and so on. Emotion word is extracted by calculating its emotional distance to each emotional category. The number of emotional category is 30. Therefore, emotional vector has 30 levels. When all emotional vectors of some character are accumulated, her/his emotion of a movie can be represented as a emotional vector. Also, thirty emotional categories can be classified as three elements of positive, negative, and neutral. As a result, emotion of some character can be represented by values of three elements. The proposed method was evaluated for 12 characters of four movies. Result of evaluation showed the accuracy of 75%.

Constructing the Semantic Information Model using A Collective Intelligence Approach

  • Lyu, Ki-Gon;Lee, Jung-Yong;Sun, Dong-Eon;Kwon, Dai-Young;Kim, Hyeon-Cheol
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.10
    • /
    • pp.1698-1711
    • /
    • 2011
  • Knowledge is often represented as a set of rules or a semantic network in intelligent systems. Recently, ontology has been widely used to represent semantic knowledge, because it organizes thesaurus and hierarchal information between concepts in a particular domain. However, it is not easy to collect semantic relationships among concepts. Much time and expense are incurred in ontology construction. Collective intelligence can be a good alternative approach to solve these problems. In this paper, we propose a collective intelligence approach of Games With A Purpose (GWAP) to collect various semantic resources, such as words and word-senses. We detail how to construct the semantic information model or ontology from the collected semantic resources, constructing a system named FunWords. FunWords is a Korean lexical-based semantic resource collection tool. Experiments demonstrated the resources were grouped as common nouns, abstract nouns, adjective and neologism. Finally, we analyzed their characteristics, acquiring the semantic relationships noted above. Common nouns, with structural semantic relationships, such as hypernym and hyponym, are highlighted. Abstract nouns, with descriptive and characteristic semantic relationships, such as synonym and antonym are underlined. Adjectives, with such semantic relationships, as description and status, illustration - for example, color and sound - are expressed more. Last, neologism, with the semantic relationships, such as description and characteristics, are emphasized. Weighting the semantic relationships with these characteristics can help reduce time and cost, because it need not consider unnecessary or slightly related factors. This can improve the expressive power, such as readability, concentrating on the weighted characteristics. Our proposal to collect semantic resources from the collective intelligence approach of GWAP (our FunWords) and to weight their semantic relationship can help construct the semantic information model or ontology would be a more effective and expressive alternative.