• Title/Summary/Keyword: Hyperlipidemic mice

Search Result 68, Processing Time 0.025 seconds

Anti-obesity and Anti-hyperlipidemic Activities of Fermented Coffee with Monascus ruber Mycelium by Solid-State Culture of Green Coffee Beans (고지방 식이를 섭취한 마우스에서 홍국균 균사체-고체발효 원두커피의 비만억제 및 지질저하 효과)

  • Sung, Jeehey;Shin, Ji-Young;Kim, Hoon;Baek, Gil-Hun;Yu, Kwang-Won;Yeon, Jeyeong;Lee, Junsoo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.3
    • /
    • pp.341-348
    • /
    • 2014
  • We investigated the anti-obesity and anti-hyperlipidemic effects of extracts of two roasted coffee beans (Vietnam robusta and Ethiopia mocha sidamo G2) and fermented coffee beans with Monascus rubber mycelium (MR) by solid-state culture. C57B/L6 mice were divided into seven groups: normal diet (ND) group, high fat diet (HFD) group, and HFD groups with hot water extracts from Vietnam robusta coffee beans (HFD-VR), MR-fermented Vietnam robusta coffee beans (HFD-VR-MR), MR-fermented Vietnam robusta coffee beans with 10% brown rice (HFD-VR-MR-BR10), Ethiopia mocha sidamo G2 coffee beans (HFD-ES), and MR-fermented Ethiopia mocha sidamo G2 coffee beans (HFD-ES-MR). After 6 weeks, body weight gain and food efficiency ratio were higher in the HFD group, but significantly reduced in the coffee extracts-fed groups. The HFD-ES-MR group showed greater body weight reduction than the HFD-ES group. The serum triglyceride, total cholesterol, and LDL-cholesterol levels as well as the atherogenic index and cardiac risk factor all tended to decrease in groups fed Vietnam robusta coffee extracts compared to the HFD group. These results suggest that Vietnam robusta and Ethiopia mocha sidamo G2 may be used to make functional coffee beverages with anti-obesity and anti-hyperlipidemic activities.

Effects of Herbal-cheonggukjang on Serum Composition and Urine in Rats (생약초 청국장이 흰쥐의 혈액성분 및 뇨에 미치는 영향)

  • Kim, Hyung-Woo;Cho, Su-Jin;Kim, Bu-Yeo;Jung, Sun;Park, Jung-Suk;Lee, Sook-Young;Cho, Su-In
    • The Korea Journal of Herbology
    • /
    • v.23 no.2
    • /
    • pp.137-143
    • /
    • 2008
  • Objectives : Cheonggukjang(natto) is known to have anti-hyperlipidemic action in our previous study. This study was designed to investigate the safety of Prototype-cheonggukjang (PC, Herbal-natto). Methods : We investigated the effects of PC on changes in body weights, food uptake, water uptake, levels of AST/ALT, levels of BUN/creatinine and electrolytes in serum from normal mice. PC is made by cheonggukjang added Codonopsis Lanceolata, Houttuynia cordata and Lentinus edodes in indicated concetrations. Results : In this experiment, PC group showed equal levels of body weights, urine volume compared to non-treated control group. Oral administration of PC did not affect food and water uptake too. Levels of AST/ALT, which are markers of liver function, were not changed by administration of PC. In addition, levels of BUN/creatinine, which are markers of renal function, were not affected by PC too. Finally electrolytes in serum were not affected by PC. Conclusions : These results imply that oral administration of PC is safe in the framework of liver and renal function, and electrolytes in serum.

  • PDF

Hypolipidemic and Hepatoprotecitive Effects of Picrorrhiza Rhizoma in High Fat Diet Supplied Mice. A Pevention Sudy.

  • Lee, Hyeung-Sik;Woo, Sung-Jung;Ku, Sae-Kwang
    • Biomolecules & Therapeutics
    • /
    • v.16 no.1
    • /
    • pp.46-53
    • /
    • 2008
  • The preventive hypolipidemic effect of the aqueous extracts of Picrorrhiza Rhizoma (PR) was observed in a high fat diet (HFD) feeding hyperlipidemic mouse with their hepatoprotective effects. PR extracts (50, 100 and 200mg/kg) were orally dosed once a day for 12 weeks initiated with HFD supply, and changes on body weight and gains, liver weight, serum aspartate transferase (AST) and alanine transferase (ALT) levels were monitored with serum low density lipoprotein (LDL), high density lipoprotein (HDL), triglyceride and total cholesterol levels. The efficacy of test articles was compared to that of 10mg/kg of simvastatin (SIMVA). Dramatic decrease of both absolute and relative liver weight was dose-dependently observed in all PR extract dosing groups as compared with HFD control group. The serum AST and ALT levels were dose-dependently decreased in PR extract dosing groups. The serum LDL, triglyceride and total cholesterol levels were dose-dependently decreased in PR extract dosing groups compared to that of HFD control group. The serum HDL levels were slightly but dose-dependently increased in PR extract dosing groups as compared with control group. The efficacy on the serum lipid levels of PR extracts was slighter than that of SIMVA. Based on these results, it is concluded that water extract of PR has a relatively good favorable preventive effects on the HFD inducing hyperlipidemia and hepatopathy.

Comprehensive Lipid Profiling Recapitulates Enhanced Lipolysis and Fatty Acid Metabolism in Intimal Foamy Macrophages From Murine Atherosclerotic Aorta

  • Jae Won Seo;Kyu Seong Park;Gwang Bin Lee;Sang-eun Park;Jae-Hoon Choi;Myeong Hee Moon
    • IMMUNE NETWORK
    • /
    • v.23 no.4
    • /
    • pp.28.1-28.20
    • /
    • 2023
  • Lipid accumulation in macrophages is a prominent phenomenon observed in atherosclerosis. Previously, intimal foamy macrophages (FM) showed decreased inflammatory gene expression compared to intimal non-foamy macrophages (NFM). Since reprogramming of lipid metabolism in macrophages affects immunological functions, lipid profiling of intimal macrophages appears to be important for understanding the phenotypic changes of macrophages in atherosclerotic lesions. While lipidomic analysis has been performed in atherosclerotic aortic tissues and cultured macrophages, direct lipid profiling has not been performed in primary aortic macrophages from atherosclerotic aortas. We utilized nanoflow ultrahigh-performance liquid chromatography-tandem mass spectrometry to provide comprehensive lipid profiles of intimal non-foamy and foamy macrophages and adventitial macrophages from Ldlr-/- mouse aortas. We also analyzed the gene expression of each macrophage type related to lipid metabolism. FM showed increased levels of fatty acids, cholesterol esters, phosphatidylcholine, lysophosphatidylcholine, phosphatidylinositol, and sphingomyelin. However, phosphatidylethanolamine, phosphatidic acid, and ceramide levels were decreased in FM compared to those in NFM. Interestingly, FM showed decreased triacylglycerol (TG) levels. Expressions of lipolysis-related genes including Pnpla2 and Lpl were markedly increased but expressions of Lpin2 and Dgat1 related to TG synthesis were decreased in FM. Analysis of transcriptome and lipidome data revealed differences in the regulation of each lipid metabolic pathway in aortic macrophages. These comprehensive lipidomic data could clarify the phenotypes of macrophages in the atherosclerotic aorta.

Effect of Porphyran isolated from Laver, Porphyra yezoensis, on Liver Lipid Peroxidation in Hyperlipidemic Rats and on Immunological Functions in Mice (김 다당류 porphyran의 급이가 흰쥐의 혈청과 간의 효소활성 및 마우스의 면역에 미치는 영향)

  • Jung, Kyoo-Jin;Jung, Bok-Mi;Kim, Seon-Bong
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.325-329
    • /
    • 2002
  • This study was carried out to investigate the effect of porphyran on enzyme activity in rats and immunity in mice. Animals were divided into 5 groups, and were given porphyran diet for 4 weeks. Porphyran was extracted from Porphyra yezoensis: Diet groups were normal diet, control diet fed high fat, cholesterol and sodium cholate, control and 1% porphyran diet (1% PD), control and 5% porphyran diet (5% PD), control and 10% of porphyran diet (10% PD). Also Balb/c female mouse were injected i.p. with porphyran extract every other day for 20 days at levels of 1%, 2% and 5%. Alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) activities were lower in the porphyran diet group than those in control group. Superoxide dismutase and catalase activities in liver homogenates were reduced in porphyran diet group compared to those of control group. Also, the level of liver thiobarbituric acid reactive substance (TBARS) was lower in porphyran group than that of control group. Porphyran increased IL-1 production in a dose-dependent manner, however, interleukine-2 production was reduced as the amount of porphyran increases. These results showed that supplementation of porphyran lowered antioxidant enzyme activities and has possibility of modulating immunological function.

The effects of Two Terpenoids, UA and ONA on Skin Barrier and Its Application

  • S. W. Lim;S. W. Jung;Kim, Bora;H. C. Ryoo;Lee, S. H.;S. K. Ahn
    • Proceedings of the SCSK Conference
    • /
    • 2003.09b
    • /
    • pp.108-109
    • /
    • 2003
  • Ursolic acid (UA) and Oleanolic acid (ONA), known as urson, micromerol, prunol and malol, are pentacyclic triterpenoid compounds which naturally occur in a large number of vegetarian foods, medicinal herbs, and plants. They may occur in their free acid form or as aglycones for triterpenoid saponins, which are comprised of a triterpenoid aglycone, linked to one or more sugar moieties. Therefore UA and ON A are similar in pharmacological activity. Lately scientific research, which led to the identification of UA and ONA, revealed that several pharmacological effects, such as antitumor, hepatoprotective, anti-inflammatory, antimicrobial, and anti-hyperlipidemic could be attributed to UA and ONA. Here, we introduced the effects of UA and ONA on acute barrier disruption and normal epidermal permeability barrier function. To clarify the effects of UA and ONA on skin barrier recovery, both flank skin of 8-12 weeks hairless mice were topically treated with samples (2mg/ml) after tape stripping, then measured recovery rate using TEWL on hairless mice. The recovery rate increased in UA and ONA treated groups at 6h more than 20% compared to vehicle treated group (p <0.05). For verifying the effects of UA and ONA on normal epidermal barrier, hydration and TEWL were measured for 1 and 3 weeks after UA and ONA applications (2mg/ml per day). We also investigated the features of epidermis and dermis using electron microscopy (EM) and light microscopy (LM). Both samples increased hydration compared to Vehicle group from 1 week without TEWL alteration (p<0.005). EM examination using Ru04 and OsO4 fixation revealed that secretion and numbers of lamellar bodies and complete formation of lipid bilayers were most prominent (ONA$\geq$UA>Vehicle). LM finding showed that stratum corneum was slightly increased and especially epidermal thickening and flattening was observed (UA>ONA>Vehicle). Using Masson-trichrome and elastic fiber staining, we observed collagen thickening and elastic fiber increasing by UA and ONA treatments. In vitro results of collagen and elastin synthesis and elastase inhibitory experiments were also confirmed in vivo findings. This result suggested that the effects of UA and ONA related to not only skin barrier but also collagen and elastic fibers. Taken together, UA and ONA can be relevant candidates to improve barrier function and pertinent agents for cosmetic applications.

  • PDF

The effect of two Terpenoids, Ursolic acid and Oleanolic acid on epidermal permeability barrier and simultaneously on dermal functions

  • Lim Suk Won;Jung Sung Won;Ahn Sung Ku;Kim Bora;Ryoo Hee Chang;Lee Seung Hun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.29 no.2 s.43
    • /
    • pp.205-232
    • /
    • 2003
  • Ursolic acid (UA) and Oleanolic acid (ONA), known as urson, micromerol and malol, are pentacyclic triterpenoid compounds which naturally occur in a large number of vegetarian foods, medicinal herbs, and plants. They may occur in their free acid form or as aglycones for triterpenoid saponins, which are comprised of a triterpenoid aglycone, linked to one or more sugar moieties. Therefore UA and ONA are similar in pharmacological activity. Lately scientific research, which led to the identification of UA and ONA, revealed that several pharmacological effects, such as antitumor, hepato-protective, anti-inflammatory, anticarcinogenic, antimicrobial, and anti-hyperlipidemic could be attributed to UA and ONA. Here, we introduced the effect of UA and ONA on acutely barrier disrupted and normal hairless mouse skin. To evaluate the effects of UA and ONA on epidermal permeability barrier recovery, both flanks of 8-12 week-old hairless mice were topically treated with either 0.01-0.1 mg/ml UA or 0.1-1 mg/ml ONA after tape stripping, and TEWL (Transepidermal water loss) was measured . The recovery rate increased in those UA or ONA treated groups (0.1 mg/ml UA and 0.5 mg/ml ONA) at 6 h more than $20\%$ compared to vehicle treated group (p<0.05). Here, we introduced the effects of UA and ONA on acute barrier disruption and normal epidermal permeability barrier function. For verifying the effects of UA and ONA on normal epidermal barrier, hydration and TEWL were measured for 1 and 3 weeks after UA and ONA applications (2mg/ml per day). We also investigated the features of epidermis and dermis using electron microscopy (EM) and light microscopy (LM). Both samples increased hydration compared to vehicle group from f week without TEWL alteration (p<0.005). EM examination using RuO4 and OsO4 fixation revealed that secretion and numbers of lamellar bodies and complete formation of lipid bilayers were most prominent $(ONA{\geq}UA>Vehicle)$. LM finding showed that thickness of stratum corneum (SC) was slightly increased and especially epidermal thickening and flattening was observed (UA>ONA>Veh). We also observed that UA and ONA stimulate epidermal keratinocyte differentiation via $PPAR\;\alpha$. Protein expression of involucrin, loricrin, and filaggrin increased at least 2 and 3 fold in HaCaT cells treated with either $ONA\;(10{\mu}M)$ or UA $(10{\mu}M)$ for 24h respectively. This result suggested that the UA and ONA can improve epidermal permeability barrier function and induce the epidermal keratinocyte differentiation via $PPAR\;{\alpha}$. Using Masson-trichrome and elastic fiber staining, we observed collagen thickening and elastic fiber elongation by UA and ONA treatments. In vitro results of collagen and elastin synthesis and elastase inhibitory activity measurements were also confirmed in vivo findings. These data suggested that the effects of UA and ONA related to not only epidermal permeability barrier functions but also dermal collagen and elastic fiber synthesis. Taken together, UA and ONA can be relevant candidates to improve epidermal and dermal functions and pertinent agents for cosmeseutical applications.

The Effect of Two Terpenoids, Ursolic Acid and Oleanolic Acid on Epidermal Permeability Barrier and Simultaneously on Dermal Functions (우솔릭산과 올레아놀산이 피부장벽과 진피에 미치는 영향에 대한 연구)

  • Suk Won, Lim;Sung Won, Jung;Sung Ku, Ahn;Bora, Kim;In Young, Kim;Hee Chang , Ryoo;Seung Hun, Lee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.263-278
    • /
    • 2004
  • Ursolic acid (UA) and Oleanolic acid (ONA), known as urson, micromerol and malol, are pentacyclic triterpenoid compounds which naturally occur in a large number of vegetarian foods, medicinal herbs, and plants. They may occur in their free acid form or as aglycones for triterpenoid saponins, which are comprised of a triterpenoid aglycone, linked to one or more sugar moieties. Therefore UA and ONA are similar in pharmacological activity. Lately scientific research, which led to the identification of UA and ONA, revealed that several pharmacological effects, such as antitumor, hepato-protective, anti-inflammatory, anticarcinogenic, antimicrobial, and anti-hyperlipidemic could be attributed to UA and ONA. Here, we introduced the effect of UA and ONA on acutely barrier disrupted and normal hairless mouse skin. To evaluate the effects of UA and ONA on epidermal permeability barrier recovery, both flanks of 8-12 week-old hairless mice were topically treated with either 0.01-0.1mg/mL UA or 0.1-1mg/mL ONA after tape stripping, and TEWL (transepidermal water loss) was measured. The recovery rate increased in those UA or ONA treated groups (0.1mg/mL UA and 0.5mg/mL ONA) at 6h more than 20% compared to vehicle treated group (p < 0.05). Here, we introduced the effects of UA and ONA on acute barrier disruption and normal epidermal permeability barrier function. For verifying the effects of UA and ONA on normal epidermal barrier, hydration and TEWL were measured for 1 and 3 weeks after UA and ONA applications (2mg/mL per day). We also investigated the features of epidermis and dermis using electron microscopy (EM) and light microscopy (LM). Both samples increased hydration compared to vehicle group from 1 week without TEWL alteration (p < 0.005). EM examination using RuO4 and OsO4 fixation revealed that secretion and numbers of lamellar bodies and complete formation of lipid bilayers were most prominent (ONA=UA > vehicle). LM finding showed that thickness of stratum corneum (SC) was slightly increased and especially epidermal thickening and flattening was observed (UA > ONA > vehicle). We also observed that UA and ONA stimulate epidermal keratinocyte differentiation via PPAR Protein expression of involucrin, loricrin, and filaggrin increased at least 2 and 3 fold in HaCaT cells treated with either ONA (10${\mu}$M) or UA (10${\mu}$M) for 24 h respectively. This result suggested that the UA and ONA can improve epidermal permeability barrier function and induce the epidermal keratinocyte differentiation via PPAR Using Masson-trichrome and elastic fiber staining, we observed collagen thickening and elastic fiber elongation by UA and ONA treatments. In vitro results of collagen and elastin synthesis and elastase inhibitory activity measurements were also confirmed in vivo findings. These data suggested that the effects of UA and ONA related to not only epidermal permeability barrier functions but also dermal collagen and elastic fiber synthesis. Taken together, UA and ONA can be relevant candidates to improve epidermal and dermal functions and pertinent agents for cosmeseutical applications.