• Title/Summary/Keyword: Hyperelastic Model

Search Result 50, Processing Time 0.024 seconds

Investigating nonlinear static behavior of hyperelastic plates using three-parameter hyperelastic model

  • Afshari, Behzad Mohasel;Mirjavadi, Seyed Sajad;Barati, Mohammad Reza
    • Advances in concrete construction
    • /
    • v.13 no.5
    • /
    • pp.377-384
    • /
    • 2022
  • The present paper deals with nonlinear deflection analysis of hyperelastic plates rested on elastic foundation and subject to a transverse point force. For modeling of hyperelastic material, three-parameter Ishihara model has been employed. The plate formulation is based on classic plate theory accounting for von-Karman geometric nonlinearity. Therefore, both material and geometric nonlinearities have been considered based on Ishihara hyperelastic plate model. The governing equations for the plate have been derived based on Hamilton's rule and then solved via Galerkin's method. Obtained results show that material parameters of hyperelastic material play an important role in defection analysis. Also, the effects of foundation parameter and load location on plate deflections will be discussed.

Dynamic visco-hyperelastic behavior of elastomeric hollow cylinder by developing a constitutive equation

  • Asgari, Masoud;Hashemi, Sanaz S.
    • Structural Engineering and Mechanics
    • /
    • v.59 no.4
    • /
    • pp.601-619
    • /
    • 2016
  • In this study, developments of an efficient visco-hyperelastic constitutive equation for describing the time dependent material behavior accurately in dynamic and impact loading and finding related materials constants are considered. Based on proposed constitutive model, behaviour of a hollow cylinder elastomer bushing under different dynamic and impact loading conditions is studied. By implementing the developed visco-hyperelastic constitutive equation to LS-DYNA explicit dynamic finite element software a three dimensional model of the bushing is developed and dynamic behaviour of that in axial and torsional dynamic deformation modes are studied. Dynamic response and induced stress under different impact loadings which is rarely studied in previous researches have been also investigated. Effects of hyperelastic and visco-hyperelastic parameters on deformation and induced stresses as well as strain rate are considered.

Stress Analysis of a Tension Sensor with a Rubber Housing for a Fence Intrusion Detection System (고무하우징을 갖는 장력센서의 변형거동 해석)

  • Lee, Hyoung-Wook;Jang, Kwang-Keol;Huh, Hoon;Kang, Dae-Im
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.698-703
    • /
    • 2001
  • This paper is concerned with the nonlinear hyperelastic problem fur the incompressible characteristics of the rubber. Tension sensor is a strain gage type load cell element for a fence intrusion detection system and consists of the sensing part and the rubber housing. The analysis includes an elastic analysis and a hyperelastic analysis of a tension sensor for the deformed shape and variation of the maximum strain on the sensing part with respect to the vertical load. Numerical results show that the hyperelastic model is stiffer and less deformed than the elastic model. Comparing with the experimental test data, we know the hyperelastic model is the better approximation than the elastic model.

  • PDF

A compressible finite element model for hyperelastic members under different modes of deformation

  • Manna, M.C.;Sheikh, A.H.;Bhattacharyya, R.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.2
    • /
    • pp.227-245
    • /
    • 2006
  • The performance of a three dimensional non-linear finite element model for hyperelastic material considering the effect of compressibility is studied by analyzing rubber blocks under different modes of deformation. It includes simple tension, pure shear, simple shear, pure bending and a mixed mode combining compression, shear and bending. The compressibility of the hyperelastic material is represented in the strain energy function. The nonlinear formulation is based on updated Lagrangian (UL) technique. The displacement model is implemented with a twenty node brick element having u, ${\nu}$ and w as the degrees of freedom at each node. The results obtained by the present numerical model are compared with the analytical solutions available for the basic modes of deformation where the agreement between the results is found to be satisfactory. In this context some new results are generated for future references since the number of available results on the present problem is not sufficient enough.

A softening hyperelastic model and simulation of the failure of granular materials

  • Chang, Jiangfang;Chu, Xihua;Xu, Yuanjie
    • Geomechanics and Engineering
    • /
    • v.7 no.4
    • /
    • pp.335-353
    • /
    • 2014
  • The softening hyperelastic model based on the strain energy limitation is of clear concepts and simple forms to describe the failure of materials. In this study, a linear and a nonlinear softening hyperelastic model are proposed to characterize the deformation and the failure in granular materials by introducing a softening function into the shear part of the strain energy. A method to determine material parameters introduced in the models is suggested. Based on the proposed models the numerical examples focus on bearing capacity and strain localization of granular materials. Compared with Volokh softening hyperelasticity and classical Mohr-Coulomb plasticity, our proposed models are able to capture the typical characters of granular materials such as the strain softening and the critical state. In addition, the issue of mesh dependency of the proposed models is investigated.

Development of Hyperelastic Model for Butadiene Rubber Using a Neural Network

  • Pham, Truong Thang;Woo, Changsu;Choi, Sanghyun;Min, Juwon;Kim, Beomkeun
    • Elastomers and Composites
    • /
    • v.56 no.2
    • /
    • pp.79-84
    • /
    • 2021
  • A strain energy density function is used to characterize the hyperelasticity of rubber-like materials. Conventional models, such as the Neo-Hookean, Mooney-Rivlin, and Ogden models, are widely used in automotive industries, in which the strain potential is derived from strain invariants or principal stretch ratios. A fitting procedure for experimental data is required to determine material constants for each model. However, due to the complexities of the mathematical expression, these models can only produce an accurate curve fitting in a specified strain range of the material. In this study, a hyperelastic model for Neodymium Butadiene rubber is developed by using the Artificial Neural Network. Comparing the analytical results to those obtained by conventional models revealed that the proposed model shows better agreement for both uniaxial and equibiaxial test data of the rubber.

Deformation of the PDMS Membrane for a Liquid Lens Under Hydraulic Pressure

  • Gu, Haipeng;Gan, Zihao;Hong, Huajie;He, Keyan
    • Current Optics and Photonics
    • /
    • v.5 no.4
    • /
    • pp.391-401
    • /
    • 2021
  • In the present study, a hyperelastic constitutive model is built by complying with a simplified hyperelastic strain energy function, which yields the numerical solution for a deformed polydimethylsiloxane (PDMS) membrane in the case of axisymmetric hydraulic pressure. Moreover, a nonlinear equilibrium model is deduced to accurately express the deformation of the membrane, laying a basis for precise analysis of the optical transfer function. Comparison to experimental and simulated data suggests that the model is capable of accurately characterizing the deformation behavior of the membrane. Furthermore, the stretch ratio derived from the model applies to the geometrical optimization of the deformed membrane.

Large deformation analysis of inflated air-spring shell made of rubber-textile cord composite

  • Tran, Huu Nam;Tran, Ich Thinh
    • Structural Engineering and Mechanics
    • /
    • v.24 no.1
    • /
    • pp.31-50
    • /
    • 2006
  • This paper deals with the mechanical behaviour of the thin-walled cylindrical air-spring shell (CAS) made of rubber-textile cord composite (RCC) subjected to different types of loading. An orthotropic hyperelastic constitutive model is presented which can be applied to numerical simulation for the response of biological soft tissue and of the nonlinear anisotropic hyperelastic material of the CAS used in vibroisolation of driver's seat. The parameters of strain energy function of the constitutive model are fitted to the experimental results by the nonlinear least squares method. The deformation of the inflated CAS is calculated by solving the system of five first-order ordinary differential equations with the material constitutive law and proper boundary conditions. Nonlinear hyperelastic constitutive equations of orthotropic composite material are incorporated into the finite strain analysis by finite element method (FEM). The results for the deformation analysis of the inflated CAS made of RCC are given. Numerical results of principal stretches and deformed profiles of the inflated CAS obtained by numerical deformation analysis are compared with experimental ones.

Sealing analysis of sealing rings with respect to rubber material properties for high pressure valve of FCEV (FCEV용 고압 밸브 실링부의 고무재질에 따른 기밀해석)

  • Park, G.Y.;Yang, K.J.;Ro, E.D.;Park, J.S.;Chon, M.S.;Lee, H.W.
    • Journal of Institute of Convergence Technology
    • /
    • v.7 no.2
    • /
    • pp.13-16
    • /
    • 2017
  • The design of sealing mechanisms of a manual pressure valve was analyzed with FE analysis for a hydrogen fuels charge and discharge system of FCEV. The damage prediction of the O-ring with respect to the material models of rubbers was calculated by the gap analysis of the backup ring and O-ring according to the internal pressure. Two kinds of the rubber material characteristic models were adopted to the O-ring. One was the linear elastic and the other was hyperelastic of Ogden $3^{rd}$ order model. The experimental data of urethane of Shore hardness 90 was utilized to the curve fitting of hyperelastic properties. It was found that the contact pattern of the backup ring was different in two models and the sealing mechanism was better in the case of the hyperelastic characteristic model.

A NUMERICAL ALGORITHM FOR ELASTO-PLASTIC MATERIAL DEFORMATION

  • HWANG HYUN-CHEOL
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.3
    • /
    • pp.589-602
    • /
    • 2005
  • We present the numerical algorithm for the model for high-strain rate deformation in hyperelastic-viscoplastic materials based on a fully conservative Eulerian formulation by Plohr and Sharp. We use a hyperelastic equation of state and the modified Steinberg and Lund's rate dependent plasticity model for plasticity. A two-dimensional approximate Riemann solver is constructed in an unsplit manner to resolve the complex wave structure and combined with the second order TVD flux. Numerical results are also presented.