Browse > Article
http://dx.doi.org/10.12989/sem.2006.24.2.227

A compressible finite element model for hyperelastic members under different modes of deformation  

Manna, M.C. (Department of Ocean Engineering and Naval Architecture, Indian Institute of Technology)
Sheikh, A.H. (Department of Ocean Engineering and Naval Architecture, Indian Institute of Technology)
Bhattacharyya, R. (Department of Mechanical Engineering, Indian Institute of Technology)
Publication Information
Structural Engineering and Mechanics / v.24, no.2, 2006 , pp. 227-245 More about this Journal
Abstract
The performance of a three dimensional non-linear finite element model for hyperelastic material considering the effect of compressibility is studied by analyzing rubber blocks under different modes of deformation. It includes simple tension, pure shear, simple shear, pure bending and a mixed mode combining compression, shear and bending. The compressibility of the hyperelastic material is represented in the strain energy function. The nonlinear formulation is based on updated Lagrangian (UL) technique. The displacement model is implemented with a twenty node brick element having u, ${\nu}$ and w as the degrees of freedom at each node. The results obtained by the present numerical model are compared with the analytical solutions available for the basic modes of deformation where the agreement between the results is found to be satisfactory. In this context some new results are generated for future references since the number of available results on the present problem is not sufficient enough.
Keywords
nonlinear finite element model; compressible strain energy function; hyperelastic material;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Askes, H., Kuhl, E. and Steinmann, P. (2004), 'An ALE formulation based on spatial and material settings of continuum mechanics, Part 2: Generic hyperelastic formulation', Comput. Methods Appl. Mech. Eng., 193, 4223-4245   DOI   ScienceOn
2 Bathe, K.J. (1982), Finite Element Procedures in Engineering Analysis, Prentice Hall, Englewood Cliffs
3 Beatty, M.F. (1987), 'Topics in finite elasticity: Hyperelasticity of rubber, elastomers, and biological tissues with examples', Appl. Mech. Rev., 40, 1699-1734   DOI
4 Belytschko, T., Lu, Y.Y. and Gu, L. (1994), 'Element-free Galerkin methods', Int. J. Numer. Methods Eng., 37, 229-256   DOI   ScienceOn
5 Chen, J.-S. and Pan, C. (1996), 'A pressure projection method for nearly incompressible rubber hyperelasticity, Part I: Theory', J. Appl. Mech., ASME, 63, 862-868   DOI   ScienceOn
6 Chen, J.S., Yoon, S., Wang, H.P. and Liu, W.K. (2000), 'An improved reproducing kernel particle method for nearly incompressible finite elasticity', Comput. Methods Appl. Mech. Eng., 181, 117-145   DOI   ScienceOn
7 Cheng, J-S. and Wu, C.-T. (1996), 'A pressure projection method for nearly incompressible rubber hyperelasticity, Part II: Applications', J. Appl. Mech., ASME, 63, 869-876   DOI   ScienceOn
8 Zienkiewicz, O.C. (1977), The Finite Element Method, 3rd Edn. Mc-Graw-Hill, New York
9 Liu, W.K., Chen, J.S. and Zhang, Y.F. (1991), 'Adaptive ALE finite elements with particular reference to external work rate on frictional interface', Comput. Methods Appl. Mech. Eng, 93, 189-216   DOI   ScienceOn
10 Cook, R.D., Malkus, D.S., Plesha, M.E. and Witt, R.J. (2001), Concepts and Applications of Finite Element Analysis, J. Wiley & Sons, New York, 4th Edition
11 De Souza Neto, E.A. and Feng, Y.T. (1999), 'On the determination of the path direction for arc-length methods in the presence of bifurcations and 'snap-backs'', Comput. Methods Appl. Mech. Eng., 179, 81-89   DOI   ScienceOn
12 Gent, A.N. (2001), Engineering with Rubber, 2nd Edition, Hanser Publishers
13 Hermmann, L.R. (1965), 'Elasticity equations for incompressible and nearly incompressible materials by a variational theorem', AIAA J., 3, 1896-1900   DOI
14 Hinton, E., and Campbell, J.S. (1974), 'Local and global smoothing of discontinuous finite element functions using a least squares method', Int. J. Numer. Methods Eng., 8, 461-480   DOI   ScienceOn
15 Kuhl, E., Askes, H. and Steinmann, P. (2004), 'An ALE formulation based on spatial and material settings of continuum mechanics, Part 1: Generic hyperelastic formulation', Comput. Methods Appl. Mech. Eng., 193, 4207-4222   DOI   ScienceOn
16 Liu, W.K., Chang, H., Chen, J.S. and Belytschko, T. (1988), 'Arbitrary Lagrangian Eulerian Petrov-Galerkin finite elements for nonlinear continua', Comput. Methods Appl. Mech. Eng,, 68, 259-310   DOI   ScienceOn
17 Nayroles, B., Touzot, G. and Villon, P. (1992), 'Generalizing the finite element method: Diffuse approximation and diffuse elements', Comput. Mech., 10, 307-318   DOI
18 Obata, Y. (1974), PhD Thesis, School of Engineering, Kyoto University, Japan
19 Ogden, R.W. (1984), Non-linear Elastic Deformations, Ellis Horwood, Chichester
20 Ogden, R.W. (1972), 'Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubber-like solids', Proc. R. Soc. London, A 326, 565-584
21 Peng, S.H., Shimbori, T. and Naderi, A. (1994), 'Measurement of elastomer's bulk modulus by means of a confined compression test', Rubber Chem. Technology, 67, 871-879   DOI   ScienceOn
22 Peng, S.H. and Chang, W.V. (1997), 'A compressible approach in finite element analysis of rubber-elastic materials', Comput. Struct., 62, 573-593   DOI   ScienceOn
23 Sulsky, D., Chen, Z. and Schreyer, H.L. (1994), 'A particle method for history-dependent materials', Comput. Methods Appl. Mech. Eng, 118, 179-196   DOI
24 Treloar, L.R.G. (1944), 'Stress-strain data for vulcanized rubber under various types of deformation', Trans. Fraday Soc., 40, 59-70   DOI
25 Zidi, M. and Cheref, M. (2002), 'Finite deformations of a hyperelastic, compressible and fibre reinforced tube', European Journal of Mechanics A/Solids, 21, 971-980   DOI   ScienceOn
26 Monaghan, J.J. (1988), 'An introduction to SPH', Comput. Phys. Comm., 48, 89-96   DOI   ScienceOn
27 Sussman, T. and Bathe, K.J. (1987), 'A finite element formulation for nonlinear incompressible elastic and inelastic analysis', Comput. Struct., 26, 357-409   DOI   ScienceOn
28 Argyris, J.H., Dunne, P.C., Angelopoulos, T. and Bichat, B. (1974), 'Large natural strains and some special difficulties due to non-linearity and incompressibility in finite elements', Comput. Methods Appl. Mech. Eng., 4, 219-278   DOI   ScienceOn
29 Masud, A. and Xia, K. (2005), 'A stabilized mixed finite element method for nearly incompressible elasticity', J. Appl. Mech., 72, 711-720   DOI   ScienceOn
30 Crisfield, M.A. (1981), 'A fast incremental/iterative solution procedure that handles 'snap-through'', Comput. Struct., 13, 55-62   DOI   ScienceOn
31 Gadala, M.S. (1992), 'Alternative methods for the solution of hyperelastic problems with incompressibility', Comput. Struct., 42, 1-10   DOI   ScienceOn