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A NUMERICAL ALGORITHM FOR
ELASTO-PLASTIC MATERIAL DEFORMATION

Hyun-CHEOL HwAaNG

ABSTRACT. We present the numerical algorithm for the model for
high-strain rate deformation in hyperelastic-viscoplastic materials
based on a fully conservative Eulerian formulation by Plohr and
Sharp. We use a hyperelastic equation of state and the modified
Steinberg and Lund’s rate dependent plasticity model for plasticity.
A two-dimensional approximate Riemann solver is constructed in
an unsplit manner to resolve the complex wave structure and com-
bined with the second order TVD flux. Numerical results are also
presented.

1. Introduction

The numerical modelling of large deformation elasto-plastic materi-
als is challenging because the phenomena is highly nonlinear, leading
to complicated wave patterns and even to material fracture or failure.
The deformation gradient fields can also be discontinuous if shock waves,
slip lines or material interfaces are involved. The treatment of multi-
dimension problems is more difficult still. The geometry of the problem
can be complex and the characteristic structure of the equations of mo-
tion is more difficult to analyze than is the case for one-dimensional
problems.

Most numerical methods for such computations are Lagrangian, and
are nonconservative through the use of stress variables to represent de-
formation states. Although the Lagrangian formulation is simpler and
faster in computation since there are no convective terms for the motion
of material, it suffers from severe mesh distortions, especially for prob-
lems having large deformation. Irregular Lagrangian meshes and their
frequent remeshing also degrade shock propagation and cause numerical

Received December 20, 2004.

2000 Mathematics Subject Classification: 74C20, 74510, 35L65.

Key words and phrases: elastoplasticity, viscoplasticity, conservation laws, mate-
rial deformation.



590 Hyun-Cheol Hwang

diffusion. The Eulerian formulation can avoid these problems by the
use of a fixed spatial grid. Also, the conservative form of the equations
makes it possible to use improved numerical methods, such as a high-
order Godunov or TVD method. Fully conservative Godunov methods
for elastic deformation have been studied by several authors ({1, 4]),
and a significant improvement resulting from the conservative formula-
tion was reported ([1]).

In this paper, we present a numerical algorithm for modeling a two-
dimensional hyperelastic-plastic solid undergoing high strain-rate defor-
mation. Our method is an unsplit total variation diminishing (TVD)
method which is second-order accurate in smooth regions and first order-
accurate where shock waves or large gradients are encountered. To
resolve the complex wave structure in an unsplit manner, an unsplit
two-dimensional approximate Riemann solver is designed.

The content of paper is summarized as follows. In the next section,
we briefly describe the conservative Eulerian formulation as our gov-
erning equations for the model of elasto-plastic materials. In section 3,
we explain the details of our numerical method. The algorithm for the
two-dimensional approximate Riemann solver and the TVD flux con-
struction are explained there. In section 4, some numerical examples
are illustrated and then we conclude this paper in section 5.

2. Conservative Eulerian formulation

In the conservative Eulerian formulation ([9]), the state of a deformed
material body is characterized by the inverse deformation gradient, the
particle velocity, a single thermodynamic variable, and several internal
variables that account for plasticity. The motion of the body is deter-
mined by conservation principles.

Consider the finite deformation of a body, first from the Lagrangian
point of view. Let X, a = 1, 2, 3 denote the material coordinates for the
(undeformed) Lagrangian configuration, and let z*, i =1,2,3 denote the
spatial coordinates for the (current, deformed) Eulerian configuration.
The motion of the material is specified by a time-dependent map ¢*
specifying the Eulerian coordinates z* of each material point X%:

(2.1) ab = (X t).
The gradient of ¢* is the matrix F*, := 0¢'/0X%, which is called the

deformation gradient, and the time derivative of ¢* (with X fixed) is
the particle velocity V* := ¢*. Equating mixed partial derivatives yields
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the conservation law Fi, = gV* /0X®, which represents the continuity
of the body.

The corresponding Eulerian equations are based upon the inverse of
the relationship (2.1):

(2.2) XO = g%z, 1),

The gradient of 1/, denoted g%; := 9*/9z, is called the inverse de-
formation gradient because when z/ and X? are corresponding points,
g%i(27,t) is the matrix inverse of F', (X%, t). Taking the time derivative
of the identity X® = *(¢*(X5,t),t), we find that the time deriva-
tive of Y@ is 91h* /It = —g*v*, where vi(2?,t) := V¥(XP,t) when 27
and X? are corresponding points. Again equating mixed partial deriva-
tives ([15]) yields the conservation law
ag*: | 9 (g%%7)
ot + ozt
If ¢%; and v® solve this equation, and if, at ¢t = 0, g% is the gradient of a
map 9§, then there exists an inverse motion ¥, equaling 95 at t = 0,
from which ¢%; and v* derive for ¢ > 0. Therefore, by including (2.3)
among the conservation laws, we can regard g% and v’ as fundamental
dynamical variables, instead of ®, and thereby reduce to a first-order
system. See (8, 16] for further discussion.

(2.3) = 0.

2.1. Governing equations

The dynamics of the body is governed by the conservation law (2.3)
along with conservation of momentum, conservation of energy, and the
evolution equations for the internal variables.

0 « 0 o kY __
24) 52 ")+ g (9°) =0,
0 ; 0 - .
- 2 _ % 5] —
(2.5) 5 (pv*) + E (pv"v?! — %) =0,
(2.6) o (pe) + _8_ (pevj — oY) =0
ot O’ : ’
9 p 9 P kY —
(27) g (PE8s) + gz (PBEst") = phas,
0 0 AN
(2.8) B (pr) + 9F (pm) ) = ph.
In these equations ¢%¥ is the Cauchy stress, e := %vivi + ¢ is the to-

tal energy per unit mass, Ayg is the plastic source term, and h is the
hardening source term.
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2.2. Constitutive equations

To complete the governing system, we require constitutive equations
for 0% and € and a plastic flow rule that defines A,g and h. Since we
assume that the response of the material to deformation is hyperelastic,
an equation of state for € also determines o,

We employ a model for the specific internal energy € founded on the
assumption that the elastic shear strain e remains small:

(2.9) € 1= Enydro(T, M) + TG(T,7) 2 +0(e).

In making this choice we have combined ideas from several authors [2,
3, 10, 11, 17). The first term represents the hydrostatic contribution to
the energy and allows for large volumetric changes; the second term, in

which G is the shear modulus, accounts for small elastic shear strain.
For this internal energy, the Cauchy stress 0 can be calculated to be

5 e 5 L
(2.10) 0¥ = pFiy = Fig = —p§¥ 4 G (devbe)? + O(e?),

OE,z3
where p := —0ehydro/0T is the hydrostatic pressure. (We use the no-

tation devA for the deviator of a 3 x 3 matrix A, defined by devA :=
A- % (trA)1.) In the implementation of the numerical code, we neglect
the higher-order terms in (2.9) and (2.10).

For epydro We use a stiffened polytropic equation of state (see [6]):

o+ P _

(2.11) Ehydro(T,7) = Lp’%(ﬂoﬂ T exp[I'n/R] + poor,
where pg, peo, I, and R are material constants. The shear modulus G
is taken from the work of Steinberg et al.[12]:

(212)  G(r,n) =Gy {1 +Gplpor)Pp + G (T — To)] ,

where Gy, Gp, and Gr are also material constants. Here the hydrostatic
pressure p and temperature T' are calculated as first derivatives of the
hydrostatic part of the internal energy:

(2.13)
p(1,m) = _?%%(T, 1) = (po + Poo) (po7) " TV exp[I'/R] — poo,
@10)  T(rm= 200 0 o T (por) T explln/,

on

where Ty := (po + Poo)/{PoR).
For more details about the formulation such as plasticity model and

flow rule, see [7, 9, 18].
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3. The finite difference scheme

Equations (2.4)—(2.8) define a system of conservation laws with source
terms:

(3.1) Wi+ F(W), + GW), = HW),

where W = (pu, PY, PE7 411, 912, 921, 922, pe?l’ p€§2, pezl)Q’ pH)T'

Other state variables, such as p, the velocities u and v, the Cauchy
stress tensor X, the plastic strain rate A, and the parameter A, are
determined uniquely as long as W is given.

The method we have developed to solve (3.1) is a second order TVD
finite difference scheme. Since a TVD scheme is only first-order accurate
at extreme points and discontinuities, the scheme cannot be globally
second-order accurate. However, we can design a scheme that is second-
order accurate in smooth regions but forced to be first-order accurate
near discontinuities. There are two main approaches: the slope-limiter
method and the flux-limiter method. Our approach to the construction
of TVD scheme can be regarded as a flux limiter method. We reconstruct
the numerical flux through an integral average of Riemann solutions from
neighboring meshes at the half time step. Recall that if we take the value
of the Riemann solution at the ¢ axis as an average, the result is just
the first-order Godunov method. We take the average of W at the half
time step,

(3.2) e L[ W (¢) dx
| 2 T Aa _pup ’

for example, in the one-dimensional case. Then the scheme

At
nt+l _ n +1/2 +1/2
(3.3) Wt =Wy - (PO - FOvitih)]

is second-order accurate. If the Riemann solution, with initial data Wj"

and W7, ,, consists of N shock waves with intermediate states W

j+1/2
and associated wave speeds A, (k =1,..., N), then this average can be
evaluated as
(3.4) w2 o AL eng oy yp®
’ JHY2 T 9AL k=1 k k=1)% j41/20
1 k
(3.5) = o e - v )W o
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Here vy, is a Courant number defined as )\kﬁ—fc, with vy = —1 and
vN+1 = 1. If W is continuous in this interval, (3.2) becomes

wn
n+1/2 At i+t
(36) I|]+1/2 - ( Vi + I]+1) 2A.’E / é-d”

after integration by parts. Here ¢ = z/t and —Az/2 < z < Az/2.
Notice that, since F/'(W)W’' = (W’ when W is continuous, (3.3) is
a just the two-step Lax-Wendroff method, which is the second order
accurate. In other words, we can construct a scheme by combining two
schemes through the proper averaging of Riemann solutions. We expand
this idea to the two-dimensional case in an unsplit manner. To update
all local wave interactions, we thus use an approximate, but fully two-
dimensional, Riemann solver.

cell-corner states
first and second step

cell—genter states
w1 third step

FIGURE 1. A sketch of cells and grids for constructing
the numerical scheme.

Our method consists of three main steps. As in Fig 3.1, we have two
different sets of state vectors in a computational domain: a cell-center
valued and a cell-edge valued state. Let us assume that states at the
beginning of each time step are given as cell-centered states. The first
step is to find states at all edges at the half time step #"+/2. These are
obtained by solving a two-dimensional Riemann problem approximately.
The detailed algorithm for the two-dimensional approximate Riemann
solver is described in the section 3.1. The next step is the construction of
the TVD flux at the edge of each cell. This construction will be described
in detail in section 3.2. In the third step, states at the full time step
t"t1 at cell-centers, e.g., I/V”"'1 in Fig 3.1, are updated implicitly by the
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following unsplit scheme
(3.7)
Wi =

At

+aag [FOV) 4 P2 - Py 2) - P t2)]

+ a0 [GOVYE) = GO+ Gy — aw )

At n T T
+ 5 [4 HWPY) + HWrHY?) 4 Hwe 2y + gwity?)

FHWH),

where W; (i = 1,...,4) are TVD states obtained in the second step. An
implicit scheme is used for the stable treatment of the source term and
solved iteratively, and the numerical stability is controlled by a CFL
condition such as

m. xAt
(3.8) CFL = e

X

<1

Here cmax = max|cr, £ u % v| is the fastest Eulerian wave speed in the
entire computational domain, and ¢r, is a longitudinal wave speed which
will be discussed below.

3.1. The two-dimensional approximate Riemann solver

The two-dimensional Riemann solver is an essential part of our un-
split scheme. In general, it is extremely difficult to find the exact solution
of the Riemann problem even in the one-dimensional case. However, for
Godunov methods, since the exact solution is expensive and is eventu-
ally averaged over each grid cell in computation, approximate Riemann
solvers are widely used and are known to give equally good numeri-
cal results. In our case, we have built a two-dimensional approximate
Riemann solver based on a bicharacteristic analysis of the linearized gov-
erning equations in Lagrangian coordinates. Since the convection terms
are disappeared in the Lagrangian frame, the computation is faster and
simpler. We find Riemann solutions in Lagrangian coordinate and then
transform the solution to the Eulerian frame. This analysis also pro-
vides the characteristic wave speed information which will be used for
the time step determination.

Let

o0) . .90, 80)
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denote a Lagrangian derivative. The governing equations are trans-
formed to the Lagrangian frame, become

Lo or
PU= e oy’
. Or Oq
1 -4 22
(3.11) E——a—(u-{—Tv)—l-—a—(Tqu )
‘ pE =5z P Oy 7
(3.12) G = -G9,
(3.13) E, = A,
(3.14) k= h,

where €1 is the velocity gradient. Then it is possible to find all charac-
teristic speeds by transforming the above system into following matrix
form:

(3.15) U=AU,+BU,+U,
and then solving

(3.16) det(cI +cos§ A+sindB) =0, for c.

However, since this calculation is computationally very expensive, we
need to find proper approximation. In the case of elastic-plastic ma-
terials, there are always two wave modes: longitutional and transverse
waves constructing two Monge cones, the ¢p,-cone and the cr-cone, at the
intersection points of four quadrants. These cones represent the prop-
agating wave front of the longitutional wave and transverse wave, re-
spectively. This method simplifies the computation of the complex wave
structure. The domain between the cp-cone and the ct-cone is decom-
posed into four regions and assumed to be a constant state within each
region. Then, our two-dimensional approximate Riemann solver should
return four intermediate states between the cr-cone and the cp-cone,
ie., Wi, Wi Wi and W{, as well as states lying outside the cp-cone, in
addition to a state W’ lying inside the ep-cone. (See Fig 2.)

First, we need to find the Lagrangian wave speed cf, and ct. In gen-
eral, the wave speed is expressed as the isotropic linear wave speed plus
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Wi Wi W3

&
W, \\/
e

FIGURE 2. Subdomains in the Lagrangian frame to de-
fine the solution for the two-dimensional Riemann prob-
lem.

some correction term, i.e.,

of, = cik +4p/(3p) + bv,
(3.17) = p/p+ o,
where ck is the bulk wave speed, and &5, and d1 represent corrections
of order € dependent on the angle of propagation. In usual metallic
materials, the order € terms are very small, so the terms dr, and dt are

neglected. The bulk wave speed is calculated as a derivative of mean
pressure with respect to mass density at constant € and entropy 7,

5] o 8 (ulp, n)) }
.1 2 == -_— 2 2 _— —_— .
(3 8) CK 8p |:7D + pe ap ( P 52’77

Therefore, the two wave speeds are computed approximately as

(3.19) = /B2 (p.m ,/cK+ 2

The next step is to find all states in the different regions. Let us
find W’ which lies inside the cr-cone first. This state is obtained by
integrating (3.10)—(3.14) across two Monge cones. The velocities u and
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v at point P are calculated as follows:

;1
u = Z(u1+uQ+U3+U4)

_+_

(pa+p3—p2—p) + (a—T3+72—11),

4pcr, 4pcr

;1
v = Z(’U1+’U2+U3+’U4)

1
(T4+73—7'2—71)+‘*—(Q4—Q3+92—Q1)-

3.20
(3200  + o

4pct
Here, pcr, and per are distinct from cell to cell; however, we omit the
cell indices for simplicity. In the same way, we then calculate the total
energy per unit mass E and the inverse deformation matrix G. The
density p' = pgdet G’ will be calculated once G’ is known.

Finally, we compute the plastic strain components from (3.14) im-
plicitly by
1

(3.21) By = 7[(Bohy + (Bp)e + (Bp)s + (Ep)d]

+ %t (AAE)) + A+ A+ Az +Ay),
and k is computed similarly. Thus, we have finished the computation
for all state variables inside the c¢p-cone.

Next, let us find four states, W%, -+ , W}, lying between the cr-cone
and the cp-cone. If one examines each term in the formula for W/,
it can be determined that the state inside the cp-cone consists of four
contributions coming from the initial state, the cp-wave, the cp-wave,
and the source term. Therefore, the intermediate states between the cp-
cone and cp-cone can be approximated by adding the contribution of the
cL-wave to the initial state. The four intermediate velocity components
of u are calculated by the formula

, a
(3.22) uh = u; + pT“’L(p’ —Dj)s
where a; = 1 for cells 7 = 1,2, and a;, = —1 for cells j = 3,4. The
intermediate velocity components of v are calculated similarly. The
intermediate internal energies are calculated by

(3.23)  Ei=Ej+-—=
peL

For the intermediate state of G we first calculate a diagonal matrix
(3.24) C; = diag (ag (v — ;) /cv, ay (v —vj) [c, 0).

. a .
(p'ui — pjug) + pTyL(qIU} — q;V5)-
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Then G is obtained by

-1
(3.25) G =G (I — -;-CJ) (I + —;-Cj) :

There are no contributions from the c;-wave and the cp-wave to the
plastic parameters E, and x. Therefore, we assign (Ep)é = (Ep)js m} =
k; for the intermediate states.

The four states Wiq, W13, Way, W3y, are created by a one-dimensional
Riemann solution, which is a special case in the above-mentioned two-
dimensional problem. The four states in the subdomains A, B, C and D
are calculated by the superposition method. e.g., the state in subdomain
A is calculated by

(3.26) Wa = Wig + (Wiz — Wh).

Therefore, we obtain the approximate solution for all subdomains, and
complete the approximate solution of the two-dimensional Riemann prob-
lem.

3.2. The higher order TVD flux construction

Higher order TVD fluxes are constructed by substituting integral
averages of Riemann solutions into the original flux function. To reduce
spurious oscillation near discontinuities and to maintain higher order
accuracy in smooth regions, we need a good limiter dependent on the
smoothness of solutions. We assume that the Riemann solution consists
of N shock waves. Using a limiter ¢, the TVD state from (3.6) is
expressed as:

nt1j2 1 1 _
321 W= 5 W)+ W) — 5 S0 op(WE — k=),
¢y, is the function of a local Courant number and a wave parameter (j,
which is defined as the ratio of the upwind change to the local change
in the state variables:

k k
(3.28) G = (WJ( - Wj(f)l)/(wj(+)l - Wj(k))a

in the case of a right-facing wave. The wave parameter expresses how
rapidly the solution is changing during a computation. If ¢ = 1, then
the flux limited scheme is just a first-order Godunov scheme, and if ¢
is a local Courant number, the scheme reduces to (3.5) which is second-
order accurate. In general, ¢ changes with the wave parameter ¢, and
various choices of ¢ are possible [13, 14].
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In our case, we use the wave information from the approximate Rie-
mann solver and determine wave parameters and limiters which lead to
a second-order TVD scheme like the linear elasticity case ([5]).

4. Numerical examples

We present some of numerical results obtained from our implemen-
tation. The example is a two dimensional Riemann problem to test
our Riemann solver. Consider an infinite body domain with neither
pre-stress nor initial deformation. The velocity components are all zero
except in the second quadrant z < 0, y > 0 where u = 1 km/sec. We
calculate the early state of motion and deformation in this body. The
material is tantalum and material parameters are given as: py = 16.69
gram/cm?, pg = 0, peo = 51.0716 GPa, v = 3.8, Tp = 300 K, po = 69
GPa, u, = 0.0145 1/GPa, pu; = —0.13- 1073 1/K, Y, = 0.375 GPa,
Yiax = 0.45 GPa, a = 0.283, 3 =22, C; = 0.71 1/us, Cy = 2.4 GPa-us,
Ug/k = 3597.5 K, Y, = 0.82 GPa. The example in 3 is the case of hyper-
elastic material with viscoplastic effects. Here two kinds of shock waves
appear: a cp-wave propagating in the z-direction due to the pressure ef-
fects on the region y > 0, and a cp-wave propagating in the y-direction
due to the shear effects on the region x < 0. A continuous region in the
fourth quadrant x > 0, y < 0 connects the two shocks. The computa-
tional results for the stress components —p and 7 at the time step 40 are
plotted in Fig 3. The two-dimensional TVD method with the approxi-
mate Riemann solver gives second-order convergence in the continuous
region, and the shocks are resolved well over about 3-5 zones. Significant
decay effects from plasticity, applying both to the shock wave fronts and
to the smooth regions, have appeared in the solution.

5. Conclusion

We have developed an unsplit two-dimenisional Riemann solver for
the model of elasto-plastic materials and successfully apply it to higher
order TVD flux. This numerical algorithm can be applied to model
complex wave propagation in elasto-plastic materials, specially for the
high-strain rate deformation of hyperelastic-viscoplastic materials. This
Riemann solver also can be applied to front tracking method to resolve
the material interface and complex shock waves appearing in impact
problems.
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hyperelastic-viscoplastic

34.63 (GPa) —=

‘/
i i
" o‘v&‘f %
l||| e “"x
l o\ ‘\‘ % ‘{‘{\
Im I| =
) ,,' v‘;"‘\x
) Sy
’I;,, .» ,W“«:a* =

Ficure 3. Distributions of stresses —p = —o,, and
T = 0gy for the two-dimensional Riemann problem for
a hyperelastic-viscoplastic material, computed by two-
dimensional TVD method.
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