• Title/Summary/Keyword: Hyperelastic

Search Result 99, Processing Time 0.024 seconds

대변형 초탄성 재료의 해석을 위한 무요소 적응기법

  • 전석기;정동원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.736-739
    • /
    • 1995
  • The meshless adaptive method based on multiple scale analysis is developed to simulate large deformation problems. In the procedure, new particles are simply added to the orginal particle distribution because meshless methods do not require mesh structures in the formulations. The high scale component of the approximated solution detects the localized region where a refinement is needed. The high scale component of the second invariant od Green-Lagrangian strain tensor is suggested as the new high gradient detector for adaptive procedures. The feasibility of the proposed theory is demonstrated by a numerical experiment for the large deformation of hyperelastic materials.

  • PDF

Buckling of plates including effect of shear deformations: a hyperelastic formulation

  • Musa, Idris A.
    • Structural Engineering and Mechanics
    • /
    • v.57 no.6
    • /
    • pp.1107-1124
    • /
    • 2016
  • Consistent finite strain Plate constitutive relations are derived based on a hyperelastic formulation for an isotropic material. Plate equilibrium equations under finite strain are derived following a static kinematic approach. Three Euler angles and four shear angles, based on Timoshenko beam theory, represent the kinematics of the deformations in the plate cross section. The Green deformation tensor has been expressed in term of a deformation tensor associated with the deformation and stretches of an embedded plate element. Buckling formulation includes the in-plane axial deformation prior to buckling and transverse as well as in-plane shear deformations. Numerical results for a simply supported thick plate under uni-axial compression force are presented.

Sequential multiscale analysis of FCC nanofilm considering hyperelastic effect (비선형 탄성효과를 고려한 FCC 나노박막의 순차적 멀티스케일 해석)

  • Kim, Won-Bae;Cho, Maeng-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.253-256
    • /
    • 2011
  • 본 논문에서는 표면효과와 비선형 탄성효과를 고려한 FCC 나노박막의 순차적 멀티스케일 해석 모델을 제시한다. 표면에서의 구성방정식은 표면응력과 표면탄성계수를 이용하여 선형으로 표시되며, 표면효과를 나타내기 위한 표면물성들은 EAM 포텐셜을 이용한 원자적 계산 방법으로 계산된다. 두께가 얇은 나노박막은 표면응력으로 인하여 면내 방향으로 수축 또는 인장의 변형이 발생하게 된다. 나노박막의 평형상태에서의 변형율은 두께가 얇은 박막의 경우 재료가 선형 탄성 영역을 벗어나는 값을 가지는 경우가 많으므로 나노박막의 해석시 벌크 영역의 비선형 탄성 효과를 고려해야 한다. 이러한 비선형 탄성 효과를 고려하기 위해 본 연구에서는 FCC 구조를 가지는 금속의 비선형 탄성 모델을 제시하고, EAM 포텐셜로 계산된 응력과 탄성 계수를 이용하여 매칭 기법을 통하여 비선형 탄성 모델의 계수들을 결정한다. 또한 Cauchy-Born Rule 모델과 분자동역학 전산모사를 통하여 본 연구에서 제안된 비선형 탄성 모델에 대한 검증을 수행한다.

  • PDF

Developement of dynamic modeling of rubber mount (고무 동특성 해석 기술 개발)

  • Lee, Shin-Bog;Jung, Jig-Han;Choi, Jae-Hwan;Lee, Young-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.87-91
    • /
    • 2013
  • Rubber Components have been playing important role for the isolation of noise and vibration of vehicle. This paper is presented the new method of dynamic modeling of rubber component for simulating the dynamic characteristics of it under the varing loading condition. Rubber dynamic model consists of the hyperelastic, viscoelastic and elasto-plastic characteristics of rubber. Dynamic proporties of rubber are calculated at each preload and frequency conditions, compared to test data, and evaluated the validity of rubber dynamic model. This technique is expected to understand and improve the characteristics of noise and vibration with relation to rubber components.

  • PDF

Homogenized elastic properties of graphene for moderate deformations

  • Marenic, Eduard;Ibrahimbegovic, Adnan
    • Coupled systems mechanics
    • /
    • v.4 no.2
    • /
    • pp.137-155
    • /
    • 2015
  • This paper presents a simple procedure to obtain a substitute, homogenized mechanical response of single layer graphene sheet. The procedure is based on the judicious combination of molecular mechanics simulation results and homogenization method. Moreover, a series of virtual experiments are performed on the representative graphene lattice. Following these results, the constitutive model development is based on the well-established continuum mechanics framework, that is, the non-linear membrane theory which includes the hyperelastic model in terms of principal stretches. A proof-of-concept and performance is shown on a simple model problem where the hyperelastic strain energy density function is chosen in polynomial form.

A Study on the sealing Characteristic of Automobile Waterproof Connector (자동차용 방수커넥터의 밀봉특성에 관한 연구)

  • Ko, Young-Bae;Park, Hyung-Pil;Lee, Jeong-Won;Cha, Baeg-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.1859-1864
    • /
    • 2014
  • Liquid silicone rubber(LSR) has been applied to various products such as electronic devices owing to its excellent thermal and chemical resistance. Hyperelastic materials, however, have properties distinguished from general metal materials. Hyperelastic materials show elastic behaviors in the range of large deformation in which load has the nonlinear relation with deformation. In addition, they have characteristics of nonlinearity, incompressibility, in large scale. On account of such characteristics, there are many difficulties in design and production using these materials. In this study, the load-deformation relation obtained from tension and compression tests was applied to finite element analysis in order to design waterproof connectors for automobiles. Furthermore, the effectiveness of the finite element analysis was confirmed by comparing the results of analysis with those of performance tests.

Non Linear Viscoelastic Constitutive Relation of Elastomers for Hysteresis Behavior (히스테리시스 거동을 하는 탄성체의 비선형 점탄성 구성방정식)

  • Yoo, Sairom;Ju, Jaehyung;Choi, Seok-Ju;Kim, Dooman
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.4
    • /
    • pp.353-362
    • /
    • 2016
  • An accurate hysteresis model of an elastomer is important for quantifying viscoelastic energy loss. We suggest a highly nonlinear hyper-viscoelastic constitutive model of elastomers. The model captures a nonlinear viscoelastic characteristic by combining Yeoh's hyperelastic model and Hoofatt's hysteresis model used Neo-Hookean hyperelastic model. Analytical and numerical models were generated from uniaxial cyclic tests of an elastomer under a sinusoidal load with a mean strain of 150%, amplitudes of 20~80%, and frequencies of 0.02~0.2Hz. The viscoelastic model can highly capture the viscoelastic energy loss up to a strain of 230%.

Geometrically non-linear static analysis of a simply supported beam made of hyperelastic material

  • Kocaturk, T.;Akbas, S.D.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.6
    • /
    • pp.677-697
    • /
    • 2010
  • This paper focuses on geometrically non-linear static analysis of a simply supported beam made of hyperelastic material subjected to a non-follower transversal uniformly distributed load. As it is known, the line of action of follower forces is affected by the deformation of the elastic system on which they act and therefore such forces are non-conservative. The material of the beam is assumed as isotropic and hyperelastic. Two types of simply supported beams are considered which have the following boundary conditions: 1) There is a pin at left end and a roller at right end of the beam (pinned-rolled beam). 2) Both ends of the beam are supported by pins (pinned-pinned beam). In this study, finite element model of the beam is constructed by using total Lagrangian finite element model of two dimensional continuum for a twelve-node quadratic element. The considered highly non-linear problem is solved by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. In order to use the solution procedures of Newton-Raphson type, there is need to linearized equilibrium equations, which can be achieved through the linearization of the principle of virtual work in its continuum form. In the study, the effect of the large deflections and rotations on the displacements and the normal stress and the shear stress distributions through the thickness of the beam is investigated in detail. It is known that in the failure analysis, the most important quantities are the principal normal stresses and the maximum shear stress. Therefore these stresses are investigated in detail. The convergence studies are performed for various numbers of finite elements. The effects of the geometric non-linearity and pinned-pinned and pinned-rolled support conditions on the displacements and on the stresses are investigated. By using a twelve-node quadratic element, the free boundary conditions are satisfied and very good stress diagrams are obtained. Also, some of the results of the total Lagrangian finite element model of two dimensional continuum for a twelve-node quadratic element are compared with the results of SAP2000 packet program. Numerical results show that geometrical nonlinearity plays very important role in the static responses of the beam.

A Study on the Characterization of Gum Vulcanizates by Strain Energy Function of Hyperelastic Material (가황 고무의 변형 에너지 함수를 통한 재료 특성화 방법에 관한 연구)

  • 박현철;윤성기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.7
    • /
    • pp.1341-1350
    • /
    • 1992
  • This paper addresses the practical problem of finding a useful strain energy function of the incompressible rubberlike materials. It examines methods by which the form of the functions are determined and shows how the selection of experimental data influences the resulting form of the functions. From this information, an optimal choice of the form of energy functions becomes possible. Phenomenological theories used in this paper are limited to elastic, incompressible material models. Due to the nature of the phenomenological methods, these theories are accurate only for the materials treated. However, they serve as a starting basis for the study of more complicated material behaviors.