• Title/Summary/Keyword: Hyperbolic equation

Search Result 150, Processing Time 0.031 seconds

Numerical Solution of Second Order Linear Partial Differential Equations using Agricultural Systems Application Platform (농업시스템응용플랫폼을 이용한 2계 편미분 방정식의 해석)

  • Lee, SungYong;Kim, Taegon;Suh, Kyo;Han, Yicheol;Lee, Jemyung;Yi, Hojae;Lee, JeongJae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.1
    • /
    • pp.81-90
    • /
    • 2016
  • The Agricultural Systems Application Platform (ASAP) provides bottom-up modelling and simulation environment for agricultural engineer. The purpose of this study is to expand usability of the ASAP to the second order partial differential equations: elliptic equations, parabolic equations, and hyperbolic equations. The ASAP is a general-purpose simulation tool which express natural phenomenon with capsulized independent components to simplify implementation and maintenance. To use the ASAP in continuous problems, it is necessary to solve partial differential equations. This study shows usage of the ASAP in elliptic problem, parabolic problem, and hyperbolic problem, and solves of static heat problem, heat transfer problem, and wave problem as examples. The example problems are solved with the ASAP and Finite Difference method (FDM) for verification. The ASAP shows identical results to FDM. These applications are useful to simulate the engineering problem including equilibrium, diffusion and wave problem.

A new 3-unknown hyperbolic shear deformation theory for vibration of functionally graded sandwich plate

  • Belabed, Zakaria;Bousahla, Abdelmoumen Anis;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Earthquakes and Structures
    • /
    • v.14 no.2
    • /
    • pp.103-115
    • /
    • 2018
  • In this work, a simple but accurate hyperbolic plate theory for the free vibration analysis of functionally graded material (FGM) sandwich plates is developed. The significant feature of this formulation is that, in addition to including the shear deformation effect, it deals with only 3 unknowns as the classical plate theory (CPT), instead of 5 as in the well-known first shear deformation theory (FSDT) and higher-order shear deformation theory (HSDT). A shear correction factor is, therefore, not required. Two common types of FGM sandwich plates are considered, namely, the sandwich with the FGM face sheet and the homogeneous core and the sandwich with the homogeneous face sheet and the FGM core. The equation of motion for the FGM sandwich plates is obtained based on Hamilton's principle. The closed form solutions are obtained by using the Navier technique. The fundamental frequencies are found by solving the eigenvalue problems. Numerical results of the present theory are compared with the CPT, FSDT, order shear deformation theories (HSDTs), and 3D solutions. Verification studies show that the proposed theory is not only accurate and simple in solving the free vibration behaviour of FGM sandwich plates, but also comparable with the higher-order shear deformation theories which contain more number of unknowns.

A novel hyperbolic plate theory including stretching effect for free vibration analysis of advanced composite plates in thermal environments

  • Elmascri, Setti;Bessaim, Aicha;Taleb, Ouahiba;Houari, Mohammed Sid Ahmed;Mohamed, Sekkal;Bernard, Fabrice;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.75 no.2
    • /
    • pp.193-209
    • /
    • 2020
  • This paper presents a new hyperbolic shear deformation plate theory including the stretching effect for free vibration of the simply supported functionally graded plates in thermal environments. The theory accounts for parabolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the plate without using shear correction factors. This theory has only five unknowns, which is even less than the other shear and normal deformation theories. The present one has a new displacement field which introduces undetermined integral variables. Material properties are assumed to be temperature-dependent, and graded in the thickness direction according to a simple power law distribution in terms of the volume power laws of the constituents. The equation of motion of the vibrated plate obtained via the classical Hamilton's principle and solved using Navier's steps. The accuracy of the proposed solution is checked by comparing the present results with those available in existing literature. The effects of the temperature field, volume fraction index of functionally graded material, side-to-thickness ratio on free vibration responses of the functionally graded plates are investigated. It can be concluded that the present theory is not only accurate but also simple in predicting the natural frequencies of functionally graded plates with stretching effect in thermal environments.

Vibration Control of an Axially Moving String: Inclusion of the Dynamics of Electro Hydraulic Servo System

  • Kim, Chang-Won;Hong, Keum-Shik;Kim, Yong-Shik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.342-347
    • /
    • 2003
  • In this paper, an active vibration control of a translating tensioned string with the use of an electro-hydraulic servo mechanism at the right boundary is investigated. The dynamics of the moving strip is modeled as a string with tension by using Hamilton’s principle for the systems with changing mass. The control objective is to suppress the transverse vibrations of the strip via boundary control. A right boundary control law in the form of current input to the servo valve based upon the Lyapunov’s second method is derived. It is revealed that a time-varying boundary force and a suitable passive damping at the right boundary can successfully suppress the transverse vibrations. The exponential stability of the closed loop system is proved. The effectiveness of the control laws proposed is demonstrated via simulations.

  • PDF

FINITE ELEMENT ANALYSIS OF LEVEL SET FORMULATION (유한요소법을 이용한 level set 공식화의 해석)

  • Choi, H.G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.223-227
    • /
    • 2009
  • In the present study, a least square weighted residual method and Taylor-Galerkin method were formulated and tested for the discretization of the two hyperbolic type equations of level set method; advection and reinitialization equations. The two approaches were compared by solving a time reversed vortex flow and three-dimensional broken dam flow by employing a four-step splitting finite element method for the solution of the incompressible Navier-Stokes equations. From the numerical experiments, it was shown that the least square method is more accurate and conservative than Taylor-Galerkin method and both methods are approximately first order accurate when both advection and reinitialization phase are involved in the evolution of free surface.

  • PDF

A Study on the Prediction of Wave Deformation Model (파랑변형 모형의 예측에 관한 연구)

  • Ok, Chi-Yul;Min, Ill-Kyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.41-52
    • /
    • 1995
  • the necessity of development of the Nearshore zone greatly emphasis in recent years. In the wave deformation model, we can get the wave height and wave direction using the hyperbolic mild slope equation considered the reflection wave. Radiation Stress the driving force of flow was calculated by the Watanabe and Maruyama who proposed on the partial standing wave. In the surf zone, applying the Izumiya and Horikawa's turbulent model considered the bottom friction and energy dissipation, we compared and examined with the Numerical model and Hydraulic test result of Watanabe and Maruyama. This model results obtained for Jin-ha Beach agreed well with the Numerical results. This model is expected so helpful to solve the prediction of the wave deformation problems in the development of the Nearshore zone in the future.

  • PDF

A Study on Residual Stress Characteristics for Joint of Soft Rock in Ring Shear Tests (링 전단시험기를 이용한 연암의 절리에 대한 잔류강도 특성에 관한 연구)

  • 권준욱;김선명;윤지선
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.281-288
    • /
    • 2000
  • In this study, we tried to determine failure criteria for joints of soft rock using ring shear test machine. The residual stress fellowing shear behavior was determined by the result of ring shear test and direct shear test. Ring shear test with the specimens which cover a large deformation range was adapted to measure a residual stress, and was possible to present the peak stress to present the peak stress to the residual stress at the same time. Residual stress is defined a minimal stress of specimens with a large displacement and the result of the peak residual stress is shown by a size of displacement volume. Therefore, the residual stress in soil was decided by shear stress of maximum shear stress - shear displacement(angle) based on the test result of a hyperbolic function ((equation omitted), a, b = experimental constant). In this study, it was proved that the residual stress of rock joint can be determined by using of this method.

  • PDF

THE EXTENSION OF SOLUTIONS FOR THE CAUCHY PROBLEM IN THE COMPLEX DOMAIN

  • Lee, Eun-Gu;Kim, Dohan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.26 no.2
    • /
    • pp.185-190
    • /
    • 1989
  • In [4], J. Leray introduced the notion of partial hyperbolicity to characterize the operators for which the non-characteristic Cauchy problem is solvable in the Geverey class for any data which are holomorphic in a part of variables x"=(x$_{2}$,..,x$_{l}$ ) in the initial hyperplane x$_{1}$=0. A linear partial differential operator is called partially hyperbolic modulo the linear subvarieties S:x"=constant if the equation P$_{m}$(x, .zeta.$_{1}$, .xi.')=0 for .zeta.$_{1}$ has only real roots when .xi.'is real and .xi."=0, where P$_{m}$ is the principal symbol of pp. Limiting to the case of operators with constant coefficients, A. Kaneko proposed a new sharper condition when S is a hyperplane [3]. In this paper, we generalize this condition to the case of general linear subvariety S and show that it is sufficient for the solvability of Cauchy problem for the hyperfunction Cauchy data which contains variables parallel to S as holomorphic parameters.blem for the hyperfunction Cauchy data which contains variables parallel to S as holomorphic parameters.

  • PDF

Non-dimensional analysis fo interior ballistics (공내탄도학의 무차원해석)

  • ;;Lee, Hung Joo;Min, Sung-Ki
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.1 no.3
    • /
    • pp.125-130
    • /
    • 1977
  • This is a dimensionless analysis of interior ballistics for the design of gun tube. One of the characteristics of this analysis is to ues the .ETA.$_{j}$ number which means a relative quantity of virtual work to the kimetic energy of projectile at the muzzle. In order to apply the concept of virtual work, it is assumed that the projectile is moved from the beginning to the end of bore under constant pressure of the certain travel distance of projectile. The principle of the analysis is induced from the Le Duc equation, which expresses velocity as a function of projectile travel and is based on the translation of a hyperbolic curve. From this non-dimensional analysis, the optimum design parameters of pressure in the bore, velocity and acceleration of projectile can be obtained from the table of figure without computation. This method was verified by the experimental work.k.

Development of 3-Dim FEM Multi-Material Hydrocode (3차원 FEM 다중물질 하이드로코드 개발 현황)

  • Lee, Min-Hyung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.116-123
    • /
    • 2008
  • Hydrocodes are large computer programs that can be used to solve a wide variety of highly transient problems such as high-speed impact and explosion events. This paper describes the recent activity to develop a Multi-material hydrocode in Korea. The code consists of two stages; Lagrangian, and remap stages. Although a sophisticated contact algorithm has been developed for Lagrangian calculations, a relatively simple mechanics at the interfaces of materials are used in the multi-material Eulerian code. Volume of fluid interface reconstruction methods are used to resolve the interfaces between different materials. For the advection stage of the cell centered properties, one-dimensional hyperbolic equation is used. Test problems demonstrated here are the high-speed impact/penetration and explosion problems.