• Title/Summary/Keyword: Hyper-Elastic Rubber

Search Result 30, Processing Time 0.022 seconds

Development and Verification of Micro-indentation Technique for Material Property Evaluation of Hyper-elastic Rubber (초탄성고무 물성평가용 미소압입시험법 개발 및 검증)

  • Lee, Hyung-Il;Lee, Jin-Haeng
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.132-137
    • /
    • 2004
  • In this work, effects of hyper-elastic rubber material properties on the indentation load-deflection curve and subindenter deformation are first examined via [mite element (FE) analyses. An optimal data acquisition spot is selected, which features maximum strain energy density and negligible frictional effect. We then contrive two normalized functions. which map an indentation load vs. deflection curve into a strain energy density vs. first invariant curve. From the strain energy density vs. first invariant curve, we can extract the rubber material properties. This new spherical indentation approach produces the rubber material properties in a manner more effective than the common uniaxial tensile/compression tests. The indentation approach successfully measures the rubber material properties and the corresponding nominal stress.strain curve with an average error less than 3%.

  • PDF

Numerical Approach Technique of Spherical Indentation for Material Property Evaluation of Hyper-elastic Rubber (초탄성 고무 물성평가를 위한 구형 압입시험의 수치접근법)

  • Lee, Hyung-Yil;Lee, Jin-Haeng;Kim, Dong-Wook
    • Elastomers and Composites
    • /
    • v.39 no.1
    • /
    • pp.23-35
    • /
    • 2004
  • In this work, effects of hyper-elastic rubber material properties on the indentation load-deflection curve and subindenter deformation are first examined via finite element (FE) analyses. An optimal data acquisition spot is selected, which features maximum strain energy density and negligible frictional effect. We then contrive two normalized functions, which map an indentation load vs. deflection curve into a strain energy density vs. first invariant curve. From the strain energy density vs. first invariant curve, we can extract the rubber material properties. This new spherical indentation approach produces the rubber material properties in a manner more effective than the common uniaxial tensile/compression tests. The indentation approach successfully measures the rubber material properties and the corresponding nominal stress-strain curve.

Software and Hardware Development of Micro-indenter for Material Property Evaluation of Hyper-Elastic Rubber (초탄성고무 물성평가용 미소압입시험기의 소프트웨어 및 하드웨어 개발)

  • Lee, Hyung-Yil;Kim, Dong-Wook;Lee, Jin-Haeng;Nahm, Seung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.816-825
    • /
    • 2004
  • In this work, effects of hyper-elastic rubber material properties on the indentation load-deflection curve and subindenter deformation are examined via finite element (FE) analyses. An optimal location for data analysis is selected, which features maximum strain energy density and negligible frictional effect. We then contrive two normalized functions, which map an indentation load vs. deflection curve into a strain energy density vs. first invariant curve. From the strain energy density vs. first invariant curve, we can extract the rubber material properties. This new spherical indentation approach produces the rubber material properties in a manner more effective than the common uniaxial tensile/com-pression tests. The indentation approach successfully measures the rubber material properties and the corresponding nominal stress-strain curve with an average error less than 3%.

Finite Element Analysis of Lead Rubber Bearing by Using Strain Energy Function of Hyper-Elastic Material (초탄성 재료의 변형률에너지함수를 이용한 LRB받침의 유한요소해석)

  • Cho, Sung Gook;Park, Woong Ki;Yun, Sung Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.361-374
    • /
    • 2016
  • The material property of the rubber has been studied in order to improve the reliability of the finite element model of a lead rubber bearing (LRB) which is a typical base isolator. Rubber exhibits elastic behaviour even within the large strain range, unlike the general structural material, and has a hyper-elastic characteristics that shows non-linear relationship between load and deformation. This study represents the mechanical characteristics of the rubber by strain energy function in order to develop a finite element (FE) model of LRB. For the study, several strain energy functions were selected and mechanical properties of the rubber were estimated with the energy functions. A finite element model of LRB has been developed by using material properties of rubber and lead which were identified by stress tests. This study estimated the horizontal and vertical force-displacement relationship with the FE model. The adequacy of the FE model was validated by comparing the analytical results with the experimental data.

Three-dimensional Finite Element Analysis of Rubber Pad Deformation (고무패드 변형의 3차원 유한요소해석)

  • Shin, S.J;Lee, T.S;Oh, S.I
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.1
    • /
    • pp.111-120
    • /
    • 1998
  • This paper is the first one of two-parted research efforts focusing on the modeling of rubber pad forming process. The rubber pad, driven by the pressurized fluid during the forming process, pushes the sheet metal to solid tool half and forms a part to final shape. In this part of the paper, a numerical procedure for the FE analysis of the rubber pad deformation is presented. The developed three-dimensional FE model is based on the total Lagrangian description of rubber maerial characterized by nearly incompressible hyper-elastic behavior under a large deformation assumption. Validity of the model as well as effects of different algorithms corresponding to incompresibility constraints and time integration methods on numerical solution responses are also demonstrated.

Finite Element Modeling of Rubber Pad Forming Process (고무 패드 성형 공정의 유한요소 모델링)

  • 신수정;이태수;오수익
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.9
    • /
    • pp.117-126
    • /
    • 1998
  • For investigating rubber pad sheet metal forming process, the rubber pad deformation characteristics as well as the contact problem of rubber pad-sheet metal has been analyzed. In this paper, the behavior of the rubber deformation is represented by hyper-elastic constitutive relations based on a generalized Mooney-Rivlin model. Finite element procedures for the two-dimensional responses, employing total Lagrangian formulations are implemented in an implicit form. The volumetric incompressibility condition of the rubber deformation is included in the formulation by using penalty method. The sheet metal is characterized by elasto-plastic material with strain hardening effect and analyzed by a commercial code. The contact procedure and interface program between rubber pad and sheet metal are implemented. Inflation experiment of circular rubber pad identifies the behaviour of the rubber pad deformation during the process. The various form dies and scaled down apparatus of the rubber-pad forming process are fabricated for simulating realistic forming process. The obtaining experimental data and FEM solutions were compared. The numerical solutions illustrate fair agreement with experimental results. The forming pressure distribution according to the dimensions of sheet metal and rubber pads, various rubber models and rubber material are also compared and discussed.

  • PDF

Non-linear Large Deformation Analysis of Elastic Rubber Mount (고무 재질 탄성 마운트의 비선형 대변형 거동 해석)

  • Nho, In-Sik;Kim, Jong-Man;Kwak, Jeong-Seok
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.2
    • /
    • pp.186-191
    • /
    • 2008
  • A lot of equipments installed in ships must be isolated for relaxing the shock, vibration and noise using the elastic mounts. Most of the elastic mounts are made of the rubber, however it is not easy to design the effective rubber mount. Because, in general, the rubber has a non-linear constitutive characteristics especially for a large deformation. So, there are many difficulties to estimate the accurate structural response of rubber which is the basis of the shape design of the mounts. In this study, the detailed non-linear viscoelastic large deformation finite element analysis method was dealt with. And to verify validity of the present analysis scheme, the results were compared with experiments.

Finite Element Shear Analysis of 3-bar Lap Rubber Specimen for High Damping Rubber Bearing (고감쇠 면진베어링 고무시편의 유한요소 전단해석)

  • Lee, Jae-Han;Yoo, Bong;Park, Ki-Su
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.419-425
    • /
    • 2001
  • The shear modulus of 3-bar lap rubber shear dynamic test specimen is investigated through incremented shear strain tests. The shear force-strain relation of rubber specimen is also calculated by ABAQUS using hyper-elastic material properties of high damping rubber. The analysis results are compatible with shear dynamic tests of 3-bar lap rubber specimen and 1/8 reduced-scale laminated rubber bearing

  • PDF