• Title/Summary/Keyword: Hydroxyapatite (HA)

Search Result 244, Processing Time 0.022 seconds

Bone Ingrowth and Enhancement of Bone Bonding Strength at Interface between Bone and HA Coated Stainless Steel (HA 코팅된 스테인레스강과 뼈의 계면에서의 경조직 성장 및 결합력 향상)

  • Kim, C.S.;Kim, S.Y.;Kim, D.H.;Khang, G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.05
    • /
    • pp.133-136
    • /
    • 1996
  • We investigated how hydroxyapatite (HA) coating onto a porous super stainless steel (S.S.S, 22Cr-20Ni-6Mo-0.25N) affects bone ingrowth in a dog transcortical femoral model. Implants were histologically evaluated after 4 and 48 weeks of implantation, and the bone bonding strength at the bone/implant interface was examined by employing the pull-out test. The direct osseous tissue bonding onto the HA-coated S.S.S was observed, but the uncoated stainless steels had thin fibrous tissue layers. The mean interface strength of the HA-coated S.S.S was 1.5 and 2.5 times greater than those of the S.S.S and the 316L SS after one year of implantation, respectively. In preliminary studies, no toxic responce was observed from a cytotoxicity test of the S.S.S, having similar corrosion resistance to titanium. Our results suggest that early osteoconductive nature of HA coating may induce long term osteointegration for a bioinert substrate.

  • PDF

Process development of a virally-safe dental xenograft material from porcine bones (바이러스 안전성이 보증된 돼지유래 골 이식재 제조 공정 개발)

  • Kim, Dong-Myong;Kang, Ho-Chang;Cha, Hyung-Joon;Bae, Jung Eun;Kim, In Seop
    • Korean Journal of Microbiology
    • /
    • v.52 no.2
    • /
    • pp.140-147
    • /
    • 2016
  • A process for manufacturing virally-safe porcine bone hydroxyapatite (HA) has been developed to serve as advanced xenograft material for dental applications. Porcine bone pieces were defatted with successive treatments of 30% hydrogen peroxide and 80% ethyl alcohol. The defatted porcine bone pieces were heat-treated in an oxygen atmosphere box furnace at $1,300^{\circ}C$ to remove collagen and organic compounds. The bone pieces were ground with a grinder and then the bone powder was sterilized by gamma irradiation. Morphological characteristics such as SEM (Scanning Electron Microscopy) and TEM (Transmission Electron Microscopy) images of the resulting porcine bone HA (THE Graft$^{(R)}$) were similar to those of a commercial bovine bone HA (Bio-Oss$^{(R)}$). In order to evaluate the efficacy of $1,300^{\circ}C$ heat treatment and gamma irradiation at a dose of 25 kGy for the inactivation of porcine viruses during the manufacture of porcine bone HA, a variety of experimental porcine viruses including transmissible gastroenteritis virus (TGEV), pseudorabies virus (PRV), porcine rotavirus (PRoV), and porcine parvovirus (PPV) were chosen. TGEV, PRV, PRoV, and PPV were completely inactivated to undetectable levels during the $1,300^{\circ}C$ heat treatment. The mean log reduction factors achieved were $${\geq_-}4.65$$ for TGEV, $${\geq_-}5.81$$ for PRV, $${\geq_-}6.28$$ for PRoV, and $${\geq_-}5.21$$ for PPV. Gamma irradiation was also very effective at inactivating the viruses. TGEV, PRV, PRoV, and PPV were completely inactivated to undetectable levels during the gamma irradiation. The mean log reduction factors achieved were $${\geq_-}4.65$$ for TGEV, $${\geq_-}5.87$$ for PRV, $${\geq_-}6.05$$ for PRoV, and $${\geq_-}4.89$$ for PPV. The cumulative log reduction factors achieved using the two different virus inactivation processes were $${\geq_-}9.30$$ for TGEV, $${\geq_-}11.68$$ for PRV, $${\geq_-}12.33$$ for PRoV, and $${\geq_-}10.10$$ for PPV. These results indicate that the manufacturing process for porcine bone HA from porcine-bone material has sufficient virus-reducing capacity to achieve a high margin of virus safety.

Synthesis of calcium phosphates from abalone shells via precipitation (전복패각을 침전법의 원료로 이용한 calcium phosphates의 합성)

  • Moon, Sung Wook;Lee, Byeong Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.4
    • /
    • pp.143-149
    • /
    • 2020
  • Calcium phosphates recognized as important bio-materials have been successfully synthesized by simple precipitation using waste abalone shells, which are rich mineral sources of calcium. Calcium hydroxide (Ca(OH)2) originated from abalone shells was used as calcium source (precursor) for the preparation. Synthesis of calcium phosphates was performed by reacting calcium hydroxide with phosphoric acid (H3PO4) in aqueous solution. The initial precursor Ca/P ratios were adjusted to 1.50, 1.59 and 1.67, and the effect of the composition and the heat treatment on the synthesized powders and sintered bodies was investigated. The phases of the sintered ceramics prepared at 1150℃ were hydroxyapatite (HAp), β-tricalcium phosphate (β-TCP), and biphasic phosphate (HAp with β-TCP)), which were determined by the initial precursor Ca/P ratios. The results demonstrate the possibility for the synthesis of high value-added calcium phosphates from economical starting materials with low cost and high availability.

THE EFFECT OF SPRAYING PARAMETEES ON THE PROPERTIES OF HYDROXYAPATITE COATUNG

  • Park, K.S.;Huh, W.T.;Son, Y.H.;Kim, C.K.;Kim, S.Y.;Kim, S.G.;Kim, S.W.
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.695-702
    • /
    • 1996
  • Plasma spraying process was employed to produce HA coating on Ti6A14V alloy for the development of a dental implant. The goal of this research was to find optimum spraying conditions for HA coating on Ti6Al4V. This study was thus designed carefully to evaluate how spraying parameters affect various physical properties of a HA coating layer, such as phase composition and bond strength. In plasma spraying, spraying parameters such as hydrogen flow rates and spraying distances were varied systematically to change the degree of the melting of starting HA powder in plasma jet. It was revealed that the deposition efficiency increased with increasing a hydrogen flow rate, and the bond strength between the HA-coated layer and Ti-alloy substrate increased with hydrogen flow rate, but decreased with spraying distance. Therefore, the hydrogen flow rate and the spraying distance should be carefully controlled to obtain the reasonable bond strength simultaneously.

  • PDF

HRTEM Analysis of Apatite Formed on Bioactive Titanium in Modified-SBF (수정된 유사체액 내에서 티타늄에 생성된 아파타이트의 고분해능 전자현미경에 의한 분석)

  • Kim, Hyun-Ook;Kim, Woo-Jeong;Lee, Kap-Ho;Hon, Sun-Ig
    • Korean Journal of Materials Research
    • /
    • v.17 no.8
    • /
    • pp.408-413
    • /
    • 2007
  • Process of the hydroxyapapite(HA) precipitation on bioactive titanium metal prepared by NaOH in a modified-simulated body fluid(mSBF) was investigated by high resolution transmission electron microscope (HRTEM) attached with energy dispersive X-ray spectrometer(EDX). The amorphous titanate phase on titanium surface is form by NaOH treatment and an amorphous titanate incorporated calcium and phosphate ions in the liquid to form an amorphous calcium phosphate. With increasing of soaking time in the liquid, the HA particles are observed in amorphous calcium phosphate phase with a Ca/P atomic ratio of I.30. The octacalcium phosphate (OCP) structure is not detected in HRTEM image and electron diffraction pattern. After a long soaking time, the HA particles grow as needle-like shape on titanium surface and a large particle-like aggregates of needle-like substance were observed to form on titanium surface within needle-like shape. A long axis of needle parallels to c-direction of the hexagonal HA structure.

Effect of three nanobiomaterials on microhardness of bleached enamel

  • Khoroushi, Maryam;Shirban, Farinaz;Kaveh, Sara;Doustfateme, Samaneh
    • Restorative Dentistry and Endodontics
    • /
    • v.41 no.3
    • /
    • pp.196-201
    • /
    • 2016
  • Objectives: The aim of this in vitro study was to evaluate the effect of incorporating three different nanobiomaterials into bleaching material on microhardness of bleached enamel. Materials and Methods: The crowns of 24 extracted sound human molars were sectioned. Sixty enamel specimens ($2{\times}3{\times}4 mm$) were selected and divided into five groups (n = 12): Group 1 received no bleaching procedure (control); Group 2 underwent bleaching with a 40% hydrogen peroxide (HP) gel; Groups 3, 4, and 5 were bleached with a 40% HP gel modified by incorporation of bioactive glass (BAG), amorphous calcium phosphate (ACP) and hydroxyapatite (HA), respectively. The enamel microhardness was evaluated. The differences in Knoop microhardness data of each group were analyzed by one-way ANOVA, followed by post hoc Tukey tests. Results: Significant differences were observed between the study groups. The enamel microhardness changes in Groups 1, 3, 4, and 5 were significantly lower than that of Group 2 (p < 0.001). Conclusions: Within the limitations of this study, it can be concluded that incorporation of each one of the three tested biomaterials as remineralizing agents might be effective in decreasing enamel microhardness changes subsequent to in-office bleaching.

Conformation of Group "a" Epitope in Hepatitis B Surface Antigen

  • Chun, Mun-Ho;Park, Won-Bong;Bok, Jin-Woo;Kim, Ha-Won;Choi, Eung-Chil;Kim, Byong-Kak
    • Archives of Pharmacal Research
    • /
    • v.15 no.4
    • /
    • pp.347-355
    • /
    • 1992
  • To elucidate structure of group "a" epitope, mouse antibodies that express idiotype monoclonal antibody and anti-idiotype monoclonal antibody against the group specific "a" determinant were purified by hydroxyapatite column. To obtain hepatitis B surface antigens (HBsAg). HBsAg positive blood was sequencially purified by ammonium sulfate precipitation, hydroxyapatite, sepharose 4B column chromatography and ultracentrifugation. The major protein (p25) and glycoprotein (gp30) of HBsAg were isolated by concanavalin-A-sepharose 4B. The ability of p25-gp30 among the HBsAg to inhibit the idiotype-anti-idiotype reaction was dependent on conformation, since reduced and alkylated p25-gp30 virtualy lost their inhibitory capacity when compared to native HBsAg. The data suggest that hepatitis B antigen is a conformational antigen critically dependent upon the disulfide bonds of p25-gp30.

  • PDF

EFFECT OF ROASTED BARLEY TEA ON THE ADHESIVE PROPERTIES ON SALIVA-COATED HYDROXYAPATITE BEADS OF CARIOGENIC MUTANS STREPTOCOCCI (보리차(Hordeum vulgare var, hexastichon)가 수산화인회석에 대한 우식유발성 세균의 부착에 미치는 영향)

  • Kim, Young-Jae;Kim, Chong-Chul;Kim, Kack-Kyun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.29 no.4
    • /
    • pp.618-624
    • /
    • 2002
  • Effect of the roasted barley tea in commercial markets on the adherence to the saliva-coated hydroxyapatite(HA) beads and the cell surface hydrophobicity of Streptococcus mutans and Streptococcus sobrinus as cariogenic microorganism was examined in vitro. Adherence activity and hydrophobicity in bacteria tested in all the barley tea samples decreased and the values were different according to the type of tea and the type of treatment. The inhibition of bacterial adsorption to HA beads suggest that barley tea active molecules as catechins and melanoidins may adsorb to a host surface, preventing the tooth receptor from interacting with any bacterial adhesions. The obtained results showed that the barley tea may inhibit bacterial adherence, the first step of the pathogenesis of dental caries in which these microorganism are involved.

  • PDF

Evaluation of Bioactivity of Ti-6Al-7Nb Alloys with Various Hydrothermal Treatment Times (열수처리 시간에 따른 Ti-6Al-7Nh 합금의 생체활성 평가)

  • Kwon O. S.;Choi S. K.;Park K. B.;Lee M. H.;Bae T. S.;Lee O. Y.
    • Korean Journal of Materials Research
    • /
    • v.14 no.12
    • /
    • pp.876-884
    • /
    • 2004
  • This study was to investigate whether the bioactivity of the anodized and hydrothermally treated Ti-6Al-7Nb alloy were affected by the time of hydrothermal treatment. Anodizing was performed at current density 30 $mA/cm^2$ up to 300 V in electrolyte solutions containing $DL-{\alpha}-glycerophosphate$ disodium salt hydrate $(DL-{\alpha}-GP)$ and calcium acetate (CA). Hydrothermal treatment was done at $300^{\circ}C$ for 30 min, 1 hr, 2 hrs, and 4 hrs to produce a thin film layer of hydroxyapatite (HA). The bioactivity was evaluated from HA formation on the surfaces in a Hanks' solution with pH 7.4 at $36.5^{\circ}C$ for 10, 20, and 30 days. Anodic oxide films were porous with pore size of $1\sim4{\mu}m\;and\;3\sim4{\mu}m$ thickness. The anodic oxide films composed with strong anatase peak with presence of rutile peak, and showed the increase in intensity of anatase peak after hydrothermal treatment. It was shown that the intensity of anatase peak increased with increasing the time of hydrothermal treatment but was no difference in rutile peak. The corrosion voltage was the highest in the group of hydrothermal treatment for 2 hrs (Ecorr: -338.6 mV). The bioactivity in Hank's solution was accelerated with increasing the time of hydrothermal treatment.

Fabrication and Properties of Ti-HA Composites Produced by Pulsed Current Activated Sintering for Biomaterials (통전가압활성소결에 의한 생체재료용 Ti-HA복합재료 제조 및 특성)

  • Woo, Kee Do;Kang, Duck Soo;Kwon, Eui Pyo;Moon, Min Seok;Shon, In Jin;Liu, Zhiguang
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.8
    • /
    • pp.508-515
    • /
    • 2009
  • Ti-6Al-4V biomaterial is widely used as a bone alternative. However, Ti-6Al-4V ELI alloy suffers from numerous problems such as a high elastic modulus and high toxicity. Therefore, non-toxic biomaterials with low elastic moduli need to be developed. Ti-HA(hydroxyapatite) composites were fabricated in the present work by pulsed current activated sintering (PCAS) at $1000^{\circ}C$ under 60 MPa using mixed Ti and HA powders. The effects of HA content on the physical and mechanical properties of the sintered Ti-HA composites have been investigated. X-ray diffraction(XRD) analysis of the Ti-HA composites, including Ti-40 wt%HA in particular, revealed new phases, $Ti_{2}O$, CaO, $CaTiO_3$, and TixPy, formed by chemical reactions between Ti and HA during sintering. The hardness of the Ti-HA composites decreased with an increase in HA content. The corrosion resistance of these composites was observed to be an excellent candidate as a commercial Ti-6Al-4 V ELI alloy. A Ti-5 wt%HA composite fabricated by PCAS is recommended as a new biomaterial, because it offers good corrosion resistance, compressive strength, wear resistance, and biocompatibility, and a low Young's modulus.